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Data assimilation methods

.

No one trusts a model except the man who wrote
it; everyone trusts an observation except the man
who made it

(Harlow Shapley)
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What is data assimilation ?

Data Assimilation

ObservationsModel

Analysis

Outline

• Types of models

• Types of observations

• Data assimilation in a nutshell

• Basic concepts

• Sequential assimilation

• Nudging

• Successive corrections

• Optimal Interpolation

• 3D-Var

• Kalman filter

• Kalman smoother

2



• Non-Sequential assimilation

• 4D-Var

• Representer method

Types of ocean models

• hydrodynamical ocean

• sea-ice model

• wave model

• sediment model

• acoustic model

• biogeochemical model and ecosystem model

Hydrodynamical ocean

Surface salinity in a two-way nested model
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Sediment model

Bed load sediment transport for different wave scenarios (Franz et al., 2017)

Wave model

Significant wave height for Hurricane
Sandy (2012) Hurricane Ike (2008)
(Chen and Curcic, 2016)
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Acoustic model

Eigenrays obtained from the Fram Strait Model (Sagen et al., 2016)

Biogeochemical model

Net primary production in the Black Sea (Capet et al., 2016)
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In situ observations
Instruments

• Conductivity, Temperature, Depth
(CTD) Sensors

• Acoustic Doppler Current Profiler
(ADCP)

• Tide gauge

• Bottom pressure recorder,...

Platforms

• Research ship

• Moored Buoys

• Profiling float, glider

• Drifter,...

Data distribution

World Ocean Data Base, NODC, NOAA
SeaDataNet, EU

• Distribution of salinity measurements from 1 to 7 August 2010.

• Distribution is very inhomogeneous, many gaps.

• Scale of variability (mesoscale) is the Rossby radius of deformation.

• In the Mediterranean Sea, this Rossy radius is about 10 km.

• Measurements in the open-ocean are costly, and problems in sharing ocean data
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Remote sensing

Parameters that can be measured from space/aircraft:

• sea surface temperature

• sea surface elevation (altimetry and gravimetry)

• sea surface salinity (since 2010)

• sea ice concentration, ice thickness

• ocean color and total suspended matter

• ...

Land-based remote sensing:

• sea surface currents

Getting ocean data

• Copernicus - Marine environment monitoring service (CMEMS) - model, in situ, satel-
lite data

• How to download CMEMS products?

• MOTU, Using the MOTU client

• Example notebook

• World Ocean Database - in situ

• SeaDataNet - in situ

• EMODNET - in situ

• Physical Oceanography Distributed Active Archive Center (PO.DAAC) - satellite data

• HYCOM - model

• ...
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Observations and data assimilation

• need to be related as closesly as possible to model variable

• SST: derive bulk temperature from skin temperature

• HF radar: (ideally) remove Stokes drift if model currents do not include the Stokes
drift

• Estimate observation error covariance

• Identify and remove outliers

• observation error is assumed to be Gaussian distributed (for most assimilation
methods)

• However, in practice extreme values (outliers) are often more common that ex-
pected from the pdf

• Using flags from the HF radar processing (e.g. quality, count, minimum/maximum
velocity during averaging,...)

• Coherence with

* other observations (risk: smoothing out gradients)

* model forecast (risk: trusting too much a “wrong” model forecast)

* model analysis

Goal of data assimilation

• Calibration: choose model parameters coherent with observations.
Example: linear regression.

J(a, b) =
∑
i

1

σ2
i

[yi − (axi + b)]2

∂J

∂a
=

∂J

∂b
= 0

1

σ2
a

=
1

2

∂2J

∂a2
1

σ2
b

=
1

2

∂2J

∂b2

• Improve the model accuracy with help of observations

• Data assimilation provides also a framework to identify model errors

• State estimation: determine the “best” (e.g. the most probable) state of a system
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Errors and uncertainty

• Neither the model nor the observations are perfect.

• Both have errors (uncertainty).

• error = systematic error (bias) + random error

• How can we represent uncertainty?

Ways to represent uncertainty

• For Gaussian-distributed errors.

• Error bars (for scalar variables) (mean, stan-
dard deviation) or confidence interval

• error covariance, example: x = (T1, T2)

P =

(
P11 P12

P12 P22

)
• Error modes (EOF: empirical orthogonal
functions)

• Graphical representation: ellipsoid for more
than one variable (vectors) (mean, error co-
variance): xP−1x = 1

• ensemble of possible values

• probability density function

Errors in an ocean model

Errors in an ocean model might be due to

• errors in initial conditions

• errors in open ocean boundary conditions

• errors in atmospheric fields (wind, air temperature, ...)
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• errors in bathymetry

• inappropriate parameterizations

• discretization error

• ...

Errors in your observations

Errors in your observations might be due to

• instrumental error (bias, drift, limited accuracy and precision)

• Observation processing error

Observations might not represent exactly the same as the model variables

• mismatch in resolved scales

• mismatch in resolved processes

• ...

In some cases the observation operator can be relative complex and might also involve same
approximation (and thus potential errors).

Notation

n scalar number of state variables
m scalar number of observations
N scalar number of ensemble members
r scalar ensemble index r = 1, . . . , N
J scalar cost function
f function model giving the model state vector at the next time step
M matrix n× n linear (or linearized) model
xf/a/t vector n× 1 the model forecast/analysis/truth
Pf/a matrix n× n error covariance of xf/a

Sf/a matrix n×N square root decomposition of Pf/a

ηn vector n× 1 the model error
Q matrix n× n error covariance of ηn

yo vector m× 1 observations
ε vector m× 1 observation error
R matrix m×m error covariance of yo

H matrix n×m observation operator
E[·] expectation

The superscript f and a refer to forecast and analysis respectively.
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Basic concepts

• The state vector xk containing all prognostic variables at time tk (time of the k-th
time step). For a primitive equation model, its dimension is about n = 5×50000×20 =
5 107.

• The dynamical model fk:

xk+1 = fk(xk) [= Mkxk + Fk if the model is linear]

x0 = xi

model ≈ reality (t: true):

xt
k+1 = fk(x

t
k) + ηk

xt
0 = xi + ηi

• The difference between two successive times tk+1− tk is not (necessarily) the time step
of the model.

• xt is of course unknown in a real application. The assimilation method does not require
the knowledge of xt.

• The observations:

yo
k = hk(x

t
k) + εk

[
= Hkx

t
k + εk if the obs. oper. is linear

]
Observation operator

• For example, an altimetry track and model grid points

• The observation operator includes often an interpolation and possibly a variable trans-
formation

• The observation errors are composed by:

εk = instrumental error + representativity error
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Observation operator for HF radar data

• The HF radar systems operating at the frequency ν couple to a wave length of λb =
c
2ν

(where c is the speed of light)

• The HF radar current: weighted average with exponentially decreasing weights (Gurgel,
1994; Gurgel et al., 1999):

usurf =
kb

1− exp(−kbh)

∫ 0

−h

u(z) exp(kbz)dz (1)

where kb =
2π
λb
,

• Essentially represent an average over the upper meters.

• Radial velocity relative to the position of the HF radar site

uHF = usurf · er (2)

Observation operator for HF radar data

• Convention here:

• er is the unit vector pointing in the towards to the location of the HF radar site.

• uHF is positive if velocity is pointing towards the site.

• Close to the HF radar site and far from the poles, direction α and bearing β are related
by α = β − 180° (otherwise apply the azimuth formula)

North

Bearing β 

Antenna

Measured location

Direction α

 α = β - 180°

sea  land

er
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Assumptions

• All errors are zero in average (i.e. no bias):

E[ηk] = E[ηi] = E[εk] = 0

• The covariances are known:

E[ηkη
T
k′ ] = Qkδkk′ E[ηkη

iT ] = 0

E[ηiηiT ] = Pi E[ηkε
T
n′ ] = 0

E[εkε
T
n′ ] = Rkδkk′

• Some assimilation methods are optimal if those assumptions are verified.

• If the assumptions are not verified (in particular biased model), the assimilation
schemes can still give useful results.

• For some assimilation methods, the error covariance matrix of the model state x is
assumed to be known:

E[
(
x− xt

) (
x− xt

)T
] = P

Consistency check

• Innovation vector dk (time index k is dropped in the following):

d = yo −Hxf = yo −Hxt −H
(
xf − xt

)
E [d] = 0

E
[
ddT

]
= R+HPHT

• HPHT is the error covariance of Hx.

• One can use these relationships to test if the model is unbiased and if the error covari-
ances are consistent.

• Normalized innovation z =
(
R+HPHT

)−1/2
d should follow a Gaussian distribution

with zero mean and covariance equal to the identity matrix.

Consistency check

• Verification statistics:
tr(zzT ) = χ2

m

The left-hand side of the previous equation follows a sum of m Gaussian distributed
variables squared. It follows thus a χ2 distribution with m degrees of freedom. This
distribution has a mean of m and a variance of 2m (Dee, 1995).
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• One can also show that (Desroziers et al., 2005):

E
[(
Hxa −Hxb

) (
yo −Hxb

)]
= HPfHT

E
[
(yo −Hxa)

(
yo −Hxb

)]
= R

E
[(
Hxa −Hxb

)
(yo −Hxa)

]
= HPaHT

Assimilation in the simplest possible case

• model Tm (a scalar number) and the observations To (also a scalar number)

• both are approximation of the true value Tt

• mean squared error of Tm: E [(Tm − Tt)
2] = σ2

m

• mean squared error of To: E [(To − Tt)
2] = σ2

o

• the model and the observations are assumed to be unbiased in mutually independent

• weighted average: Ta = (1− α)Tm + αTo

• mean square error of the weighted average:

σ2
a = E

[
(Ta − Tt)

2
]
= E

[
((1− α)(Tm − Tt) + α(To − Tt))

2]
= (1− α)2σ2

m + α2σ2
o

• at the minimum, we have ∂σa

∂α
= 0

• we can show that: α = σ2
m

σ2
m+σ2

o

Assimilation in the simplest possible case

• Example for σm = σo = 1
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Assimilation in the simplest possible case

• Example for σm = 2 and σo = 1
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Sequential assimilation

Initialization: xa
0 = xi

?

Forecast: xf
k+1 = fk(x

a
k)

?

Analysis: xa
k+1 = xf

k+1 +Kk

(
yo
k+1 − hk(x

f
k+1)

)
�

• Kk: Kalman gain

• Analysis = only unbiased estimation if h is linear

Unbiased linear combination

• Model forecast xf and observations yo are assumed unbiased

• Linear combination xa should be unbiased too E[xa] = xt

• General form of linear combination

xa = J xf +K yo

E[xa] = J E[xf ] +K E[yo]

E[xa] = J xt +KH xt

E[xa] = (J+KH)xt

therefore J+KH = I. If we choose J = I−KH,

• Analysis:

xa = (I−KH)xf +Kyo

xa = xf +K
(
yo −Hxf

)

Direct insertion

• Part of the state vector is directly observed (e.g. SST)
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• The observed part of the state vector is replaced by the observations.

xa
kj′(i) = yo

ki

xa
kj = xf

kj on non-observed grid points

• The ith observation corresponds to the j′(i) element of the state vector

• The observation operator will be one for the observed elements of the state vector and
zero otherwise (Hj′(i),i = 1).

xa
k = xf

k +HT
(
yo − xf

k

)
• Error in the model are assumed to be much larger than errors of the observations

Direct insertion

• Problems

• Updated part of the state vector is inconsistent relative to the part of the state
vector which is not observed.

• Adjustment processes (e.g. geostrophic adjustment creating barotropic waves,
mixing) can degrade the model results
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Nudging

• As in direct insertion, a part of the state vector must be directly observed.

• Analysis:

xa
kj′(i) = xf

kj′(i) + ri

(
yo
ki − xf

kj′(i)

)
xa
kj = xf

kj on non-observed grid points

• In matrix form:
xa
k = xf

k + riH
T
(
yo − xf

k

)
• For a scalar variable: (1/r = relaxation time scale)

dx

dt
= f(x(t)) + r (yo(t)− x(t))

• Relaxation term is applied at the model time step.

• SST Nudging ⇒ correction of surface heat flux.

• Nudging towards climatology to prevent drift of the model.

• Relaxation reduces the model variability.

Example

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

x

dx/dt = r (yo − x) (here r = yo = 1)
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Demonstration

• A web-application showing the functioning of different assimilation methods is available
at http://www.data-assimilation.net/Tools/AssimDemo/.

• Review of what is a twin-experiment:

• controlled model experiment

• one model solution is declared as the “true” solution

• pseudo-observation are extracted from this solution and noise is added

• uncertain aspect of the model are perturbed

• the pseudo-observations are assimilated into perturbed model

• To which extend is the perturbed model similar to the “true” solution using data
assimilation?

• Very simple models can be used:

No time variation

The state vector x has two elements (x1, x2)
T and there is no time variation:

xn+1 = xn (3)

• The model matrix M is thus the identity matrix.

• The two model variables are not dynamically coupled

1D advection in periodic domain

The state vector x has four elements and it is subjected to the following dynamics

x(n+1) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

x(n) (4)

This simple system would be the result of a 1D advection scheme in a periodic domain
with a constant velocity. The grid resolution over the time step is equal to the velocity.

Without using the web-interface, what would be the model state after the 1st, 2nd,...
time step?.
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Oscillations

• The state vector x has two elements and it is governed by:

dx1

dt
= fx2 (5)

dx2

dt
= −fx1 (6)

• The numerical example uses f = 2π with a time step of ∆t = 0.1. One can show that
two successive states are related by:

x(n+1) =

(
cos(f∆t) sin(f∆t)
− sin(f∆t) cos(f∆t)

)
x(n) (7)

• What kind of oscillation would these equations describe in the ocean?

Two oscillations

The state vector x has four elements and it is governed by:

dx

dt
= Ax =


0 0 −a −b
0 0 −b −a
a b 0 0
b a 0 0

x

where a = 2π and b = π. The eigenvectors and eigenvalues of the model matrix allow us
to find an analytic solution:

x(t) =


C1 C2 C3 C4

C1 C2 −C3 −C4

−C2 C1 −C4 C4

−C2 C1 C4 −C3




cos(ωt)
sin(ωt)
cos(ω′t)
sin(ω′t)


where ω = a+ b and ω′ = a− b.
In the numerical example, this equation is solved with a Crank-Nicholson schema and a

time step ∆t = 0.1.

xn+1 − xn

∆t
= A

xn+1 + xn

2(
I− ∆t

2
A

)
xn+1 =

(
I+

∆t

2
A

)
xn

The model matrix is thus:
M =

(
I− ∆t

2
A
)−1 (

I+ ∆t
2
A
)
.

xn+1 = Mxn (8)
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Lorenz model

The classical Lorenz model (simplified mathematical model for atmospheric convection) with
σ = 10, β = 8/3 and ρ = 28.

dx

dt
= σ(y − x) (9)

dy

dt
= x(ρ− z)− y (10)

dz

dt
= xy − βz (11)

The system is discretized with a Runge Kutta time stepping scheme with ∆t = 0.05.

Nudging demo

• Model: identity xk+1 = xk

• Single observation (Model time steps between observations: 25)
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=25

• Relaxation term acts as low pass-filter (Model time steps between observations:
1)
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1

• Over-fitting of observations if nudging relaxation time-scale is too short (Model
time steps between observations: 1, relaxation time-scale: 2)
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1&nudging_ts=2

• Model: oscillation (a system with two variables)

• Based on the default values, try to find a good relaxation time-scale
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=oscillation

• How would you need to the change the other parameters to improve the solution
with assimilation?

Optimal Interpolation

• The observation operator must be linear

• The error of the state vector follows a Gaussian distribution

• The error covariance of the model state vector is assumed to be known and defined as:

Pf,a
k = E[(xf,a

k − xt
k)(x

f,a
k − xt

k)
T ]
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• We assume that Pf
k is known.

• The Kalman gain is chosen such that the norm of xa
k − xt

k is as small as possible:

J(K) = E[(xa
k − xt

k)
TW(xa

k − xt
k)] = tr(WPa

k)

• We introduce an error norm with the diagonal matrix W

• The optimal value of K is independent of W

Kk = Pf
kH

T
k

(
HkP

f
kH

T
k +Rk

)−1

Analysis equation

• Graphical representa-
tion

• Uncertainty is repre-
sented by the proba-
bility density function
(pdf) of the model
state vector

• Intensity of the color:
→ probability

p(x) = Aexp(−(x− xf )TPf−1
(x− xf ))
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Analysis equation

• pdf of the model state
vector

• pdf of the observa-
tions given the model
state vector

• Bayes rule:

p(x|yo) = A′ exp(−(xf − x)TPf−1
(xf − x))

exp(−(yo −Hx)TR−1(yo −Hx))

Analysis equation

• product of two Gaus-
sian pdf is also a
Gaussian pdf
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p(x|yo) = A′ exp(−(x− xa)TPa−1(x− xa))

How to derive the Kalman gain?

• The analysis is given by:

xa = xf +K
(
yo −Hxf

)
(12)

= (I−KH)xf +Kyo (13)

• The variance of the analysis xa is a function of the gain matrix K:

Pa (K) = (I−KH)Pf (I−KH)T +KRKT (14)

• We want to have the overall smallest possible error on xa.

tr (WPa (K)) = tr
(
WPf

)
− 2 tr

(
WKHPf

)
+ tr

(
WK HPfHTKT

)
+tr

(
WKRKT

)
Kalman gain

• If K is the optimal gain, then a small increment of δK does not modify the total error
variance in the first order of δK.

tr (WPa (K+ δK))− tr (WPa (K)) (15)

= 2 tr
(
WK HPfHT δKT

)
− 2 tr

(
WPfHT δKT

)
+ 2 tr

(
WKRδKT

)
= 2 tr

(
W

[
K

(
HPfHT +R

)
−PfHT

]
δKT

)
• Note that we used: tr(AB) = tr(BA) and tr(A) = tr(AT )

• Since the perturbation δK is arbitrary, the expression inside the brackets has to be
zero.

K = PfHT
(
HPfHT +R

)−1
(16)
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Error covariance of the analysis

Equation (14) can be expanded into:

Pa = Pf −KHPf −PfHTKT +K
(
HPfHT +R

)
KT (17)

= Pf −KHPf −PfHTKT +PfHTKT (18)

= Pf −KHPf (19)

where we used the optimal gain from equation (16).

Optimal Interpolation analysis

• Analysis:

xa = xf +PfHT (HPfHT +R︸ ︷︷ ︸
covariance of the i.v.

)−1 (yo −Hxf︸ ︷︷ ︸
innovation vector

)

Pa = Pf −KHPf

• For scalars: if we want to combine the temperature predicted by a model Tm (σm) with
an observation To (σo), the analyzed temperature is:

Ta =

(
1

σ2
m

+
1

σ2
o

)−1(
Tm

σ2
m

+
To

σ2
o

)
σ2
a =

(
1

σ2
m

+
1

σ2
o

)−1

Equivalent formulations

Equivalent formulations for the Kalman gain:

K = PfHT
(
HPfHT +R

)−1
(20)

=
(
Pf−1

+HTR−1H
)−1

HTR−1 (21)

= PaHTR−1 (22)

(proved using the Sherman-Morrison-Woodbury formula). For the analysis error covari-
ance matrix:

Pa−1 = Pf−1
+HTR−1H (23)
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and the analysis update:

Pa−1xa = Pf−1
xf +HTR−1Hyo (24)

Do you see a pattern in these two equations? What would be the analysis equation if
you combine say 2 independent models and 3 independent observations vectors?

Example

• Compare the behavior of variable x2 of the model “identity matrix” and “oscillation”.

• http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=id

• http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=oscillation

• Describe the behavior of the OI scheme if the error correlation of x1 and x2 is 0.9 for
the model “identity matrix”.

0 2 4 6 8 10
−2

−1

0

1

2

x
t

x
a

x
b

y
o

Figure 1: The observed part of a linear system with 4 state variables: the true state vector,
xt, the analysis xa, the state of the system without assimilation xb (b, background). The
observations yo are extracted from xt. The trajectories xa and xb start from a wrong initial
condition.

Covariances

• P : n× n(n ≈ 106). 1012 variables to determine and to store !?

• Constraints: fields are generally “smooth”, close to hydrostatic and geostrophic equi-
librium (at sufficiently large scales) and obeying conservation laws,...
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• Decomposition of P in variance D and correlation C

P = D1/2CD1/2

• Correlation length = typical spatial scale of the dominant process

• ⇒ “smooth” field

Correlation C

Reduced rank covariance matrices

• Representation of the covariances by the dominant eigenvectors and eigenvalues:

P = E[ηηT ] (25)

P = LDLT L : n× r, D : r × r (26)

In general r ≈ 10− 100.

• Motivation: Empirical orthogonal functions have been shown to reduce the time vari-
ability of an ocean model and satellite data to a very small subspace defined by the
EOFs.

• For the analysis, P = LDLT doesn’t have to be formed explicitly

K = L
(
D−1 + LTHTR−1HL

)−1
LTHTR−1

• Related to SEEK analysis

Ensemble Optimal Interpolation

• Definition of error covariance

P = E[(x− E[x])(x− E[x])T ] (27)

• Ensemble representation: x(r), r = 1, . . . , N

P =< (x− < x >)(x− < x >)T >= xxT <>= ensemble average

In general slower convergence (N−1/2) if N increases. N ≈ 100− 500.

• Consequence: The model error η and the correction of the state vector xa
k −xf

k belong
to the vector subspace spanned by the columns of L (or x).

• But a reduced-rank covariance introduces an nonphysical long-range correlation
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Balanced covariances

• Conservation of e.g. salinity:
∫
Sd3x = const.

Geostrophic equilibrium: v = 1
ρ0f

ez ×∇ph(T, S, ζ)

• General form (linear constraints):

Cx = const.⇒ CP = 0

• Example:
∑

i cov(Si, Sj) = 0
In this case, the assimilation would not change the total salinity

3D-Var

• Minimization of the cost function:

J(x) =
(
x− xf

)T
Pf−1 (

x− xf
)
+ (yo − h(x))T R−1 (yo − h(x))

using its gradient:

∇J(x) = 2Pf−1 (
x− xf

)
− 2H(x)TR−1 (yo − h(x)) where Hjm =

∂hm

∂xj

• Minimization: conjugate gradient, Newton-Raphson method,...

• The covariance of the analysis:

Pa−1 =
1

2
∇x∇xJ (28)

= Pf−1
+HTR−1H (29)

• Generalization of optimal interpolation to non-linear h

• No general inversion of m×m matrices.

• The term xTPf−1
x can be parameterized as “smoothness” constrain:∫

D

α2∇∇φ : ∇∇φ+ α1∇φ · ∇φ+ α0φ
2dD (30)

x is a discretization of the continuous field ϕ.
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(a) Example of oceanographic field (b) Extracted observations with errors
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(c) Linearly interpolated field (d) Interpolated field with Diva

Figure 1: Reconstruction of a field based on scattered observations using linear interpolation and Diva.

4

Relationship between 3D-var and optimal interpolation

For a linear H,

1

2
∇J(xa) = 0 (31)

= Pf−1 (
xa − xf

)
−H(x)TR−1 (yo −Hxa) (32)

Solving for xa:

(
Pf−1

+HTR−1H
)
xa = Pf−1

xf +HTR−1
(
yo−Hxf +Hxf

)
(33)

xa = xf +
(
Pf−1

+HTR−1H
)−1

HTR−1
(
yo −Hxf

)
(34)

Sherman-Morrison-Woodbury formula:(
Pf−1

+HTR−1H
)−1

HTR−1 = PfHT
(
HPfHT +R

)−1
(35)
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For a linear observation operator, H, 3D-Var is thus equivalent to optimal interpolation!

• http://data-assimilation.net/Tools/divand_demo/html/

• First make some simple test with one and with two observations (one both sides of a
gradient), change the correlation length.

• Try to make the “best” analysis with 10 observations at well chosen locations.

The Kalman filter

• Error propagation through an algebraic expression such like ρ = ρ(T, S):

σ2
ρ =

(
∂ρ

∂T

)2

σ2
T +

(
∂ρ

∂S

)2

σ2
S

=
(

∂ρ
∂T

∂ρ
∂S

)( σ2
T 0
0 σ2

S

)(
∂ρ
∂T
∂ρ
∂S

)
• For a model:

Pk+1 = MkPkM
T
k +Qk where Mkjj′ =

∂fkj
∂xj′

• linear model: Kalman filter

• non-linear model: Extended Kalman filter (for error propagation the model is lin-
earized)
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Derivation of the error propagation equation

• The definition of the error covariance matrix of xk+1

Pk+1 = E
[(
xk+1 − xt

k+1

) (
xk+1 − xt

k+1

)T]
(36)

• The difference between the evolution equation of xk+1 and xt
k+1 yields

xk+1 − xt
k+1 = Mk(xk − xt

k)− ηk (37)

• Finally
Pk+1 = MkPkM

T
k +Qk (38)

Miu2

t

x1

xi

u1
xi+1

central forecast

Miu1

u2
x2

Figure 2: Forecast of the error covariance with the tangent linear model

• Discuss error propagation for Q = 0 and Q ̸= 0 for models “identity matrix”, and

“oscillation” (Pi = I and Pi =

(
0 0
0 1

)
).

• Comment on error propagation with Lorenz model.
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(Extended) Kalman filter scheme

Initialization: xa
0 = xi

Pa
0 = Pi

?

Forecast: xf
k+1 = fk(x

a
k)

Pf
k+1 = MkP

a
kM

T
k +Qk

?

Analysis: xa
k+1 = xf

k+1 +Kk+1

(
yo
k+1 − hk+1(x

f
k+1)

)
Kk+1 = Pf

k+1H
T
k+1

(
Hk+1P

f
k+1H

T
k+1 +Rk+1

)−1

Pa
k+1 = Pf

k+1 −Kk+1Hk+1P
f
k+1

�
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Figure 3: Example of a Kalman filter applied to a linear system. The curves from the first
graph correspond to the observed part of the system. The lower panel shows the evolution of
the error covariance. The error variance of the state vector is reduced at every assimilation
cycle.

Numerical example: a water column

• Application of the Extended Kalman Filter

• Model represents a water column governed by:
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∂u

∂t
+ fez × u =

∂

∂z

(
ν̃
∂u

∂z

)
(39)

∂T

∂t
=

∂

∂z

(
λ̃
∂T

∂z

)
(40)

∂S

∂t
=

∂

∂z

(
λ̃
∂S

∂z

)
(41)

∂k

∂t
= ν̃

(
∂u

∂z

)2

− ν̃

16
k2 − ν̃

∂b

∂z
+

∂

∂z

(
ν̃
∂k

∂z

)
(42)

• The prognostic variables u, T, S and k

• The diagnostic variables: buoyancy b, the Richardson number Ri the turbulent diffu-
sion coefficient ν̃ and λ̃:

b(T, S) =
ρ(T, S)− ρ0

ρ0
(43)

Ri =
∂b

∂z

(
∂u

∂z

)−2

(44)

ν̃ = ν̃(Ri, k) (45)

λ̃ = λ̃(Ri, k) (46)

Twin experiment

• Pseudo-observations = surface temperature generated by the model + noise

• For the assimilation, the model is started with a different initial condition than the
model run that generated the observations

• Water column of 100 m depth and 30 vertical levels

33



14

14.5

15

15.5

16

0 5 10

−50

−40

−30

−20

−10

0
Analyse  x

a

14

14.5

15

15.5

16

0 5 10

−50

−40

−30

−20

−10

0
Référence  x

t

0

0.2

0.4

0.6

0.8

1

0 5 10

−50

−40

−30

−20

−10

0
Différence  x

a
 −  x

t

0

0.05

0.1

0.15

0.2

0 5 10

−50

−40

−30

−20

−10

0

Covariance entre la T
surf

 et T(z)

Figure 4: Temperature as a function of time (hours) and depth. Only the upper 50 meters
are shown.

Applications outside oceanography

First applied to the trajectory estimation for the Apollo program

• Attitude and Heading Reference Sys-
tems

• Autopilot

• Battery state of charge estimation

• Brain-computer interface

• Chaotic signals

• Tracking of objects in computer vision

• Dynamic positioning

• Economics, in particular macroeco-
nomics, time series, and econometrics

• Inertial guidance system

• Orbit Determination

• Radar tracker

• Satellite navigation systems

• Seismology

• Sensorless control of AC motor
variable-frequency drives

• Simultaneous localization and mapping

• Speech enhancement

• Weather forecasting

• Structural health monitoring
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Kalman Filter Demonstration

No time variation

Test to carry out:

1. Only the first variable x1 is observed, Pi = I, R = 0.2 and no model noise Q = 0 is
assumed. Explain the behavior of x1, x2 in time and their error covariance matrix.

2. How to change the previous setup, to increase the rate of convergence of x1 to the true
state?

3. Use default values, except assuming that initially x1 and x2 are perfectly correlated.
Explain the behavior of x2.

4. Use default values, except assuming that Q = 0.1I (“random walk”). Discuss first the
free run (state vector and its error covariance/error standard deviation) and then the
results with assimilation.

1D advection in periodic domain

1. Using the default value, explain the behavior of the observed variables x1 and x3 (and
their error covariance). Why do the non-observed variables get corrected too?

2. Using the default values, except reducing the model time step between observations
from 6 to 5. We increase the frequency of assimilation, yet no variable converges
anymore. Why? Can this happen in oceanography? Think of an example.

3. Use default values, except assuming that Q = 0.1I. How could you use the error
covariance of the results with assimilation to justify the use of optimal interpolation?

Oscillations

1. Using the default values, why does the error covariance P remains equal to the identity
matrix of the free run?

2. What different changes to the default values are necessary to make the run with as-
similation converge to the true solution?

3. Discuss the correction by data assimilation of the variables x1 and x2 (not directly
observed).
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Propagation of uncertainty - Non-Gaussian errors

• The probability density p(x, t) for the random vector Xt satisfies the Fokker-Planck
equation

∂p(x, t)

∂t
= −

N∑
i=1

∂

∂xi

[fi(x)p(x, t)]︸ ︷︷ ︸
advection

+
N∑
i=1

N∑
j=1

∂2

∂xi ∂xj

[Qij(x)p(x, t)]︸ ︷︷ ︸
diffusion

• ηk is assumed to be normally distributed N(0,Q)

Propagation of uncertainty - Non-Gaussian errors

• Even if the model is non-linear, the Fokker-Planck equation is linear (not always non-
chaotic)!

• Impossible to solve for large geophysical problems

• If every dimension of x would be discretized with 100 grid points, then pdf p would
represent 100n numbers.

• Equation is similar to an advection-diffusion dimension in fluid dynamics (however in
a very high dimensional space)

• If this equation represents the Eulerian view, what would be the equivalent Lagrangian
view?
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Ensemble simulation

• Lagrangian approach to the Fokker Planck simulation → ensemble simulation

• In an ensemble simulation, a model is run a large number of times with different forc-
ings, initial condition, parametrization,... within the uncertainty limit of the perturbed
variable

• The spread of the ensemble reflects the resulting uncertainty in the model results
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Ensemble Kalman Filter

• From the ensemble of forecast states xf (r) (r = 1, . . . , N) one can compute the ensemble
mean

xf =
1

N

N∑
r=1

xf (r)

(47)

• The covariance around this mean is the ensemble covariance:

Pf =
1

N − 1

N∑
r=1

(
xf (r) − xf

)(
xf (r) − xf

)T

(48)

• We construct the columns of the matrix Sf by:

(
Sf

)
r
=

xf (r) − xf

√
N − 1

(49)

where Sf is a n × N matrix, which each column being the difference between each
member and its ensemble mean.

• Pf is thus naturally decomposed in terms of this square root matrix Sf :

Pf = SfSf T (50)
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• The original Ensemble Kalman Filter (Evensen, 1994; Burgers et al., 1998) use per-
turbed observations

yo(r) = yo + ε(r)

where ε(r) is a random vector following a Gaussian distribution with zero mean and a
covariance of R.

• The ensemble mean yo(r) is often forced to zero

• The added perturbation can be interpreted as perturbation of Hxf (r).

• Every ensemble member is updated according to:

xa(r) = xf (r) +K
(
yo(r) −Hxf (r)

)
The Kalman gain is based on the ensemble covariance of the state vector

K = PfHT
(
HPfHT +Re

)−1

where Re is the ensemble approximation of the observational error covariance matrix.

Re =
1

N − 1

N∑
r=1

(
ε(r) − ε

) (
ε(r) − ε

)T
(51)

• Issues

• Need to use perturbed observation introduces → additional source of error

• Approach difficult to implement if m is large (→ sub-sampling or binning of the
observations)

Ensemble Transform Kalman filter

• Formulation of the Kalman gain with the full observational error covariance matrix

K = PfHT
(
HPfHT +R

)−1
(52)

= (SfSf T )HT
[
H(SfSf T )HT +R

]−1

(53)

= Sf (HSf )T
[
HSf (HSf )T +R

]−1
(54)

= Sf
[
I+ (HSf )TR−1HSf

]−1
(HSf )TR−1 (55)
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• The Sherman-Morison-Woodbury identity has been applied from (54) to (55). This
identity can be expressed as:

ABT
(
C+BABT

)−1
=

(
A−1 +BTC−1B

)−1
BTC−1 (56)

with A = I, B = HSf , C = R.

• That is, instead of performing the inverse of an m by m matrix we need to perform
only an inverse of a N by N matrix.

• The analysis covariance error Pa:

Pa = Pf −KHPf (57)

= SfSf T −KHSfSf T (58)

= SfSf T − Sf
[
I+ (HSf )TR−1HSf

]−1
(HSf )TR−1HSSf T (59)

= Sf
[
I−

(
I+ (HSf )TR−1HSf

)−1
(HSf )TR−1HS

]
Sf T (60)

• The goal is to find an expression like this:

Pa = SaSaT (61)

• This is possible when the following eigenvalue decomposition is made :

(
HSf

)T
R−1HSf = UΛUT (62)

where UTU = I and where Λ is diagonal. U and Λ are both of size r × r.

• Using the decomposition (62) in equation (60) one obtains:

Pa = Sf
[
I− (I+UΛUT )−1UΛUT

]
Sf T (63)

= Sf
[
I− (I+UΛUT )−1

(
UΛUT + I− I

)]
Sf T (64)

= Sf
[
I− (I+UΛUT )−1

(
UΛUT + I

)
+ (I+UΛUT )−1

]
Sf T (65)

= Sf
[
I− I+ (I+UΛUT )−1

]
Sf T (66)

= Sf (I+UΛUT )−1Sf T (67)

= Sf (UUT +UΛUT )−1Sf T (68)

= SfU(I+Λ)−1UTSf T (69)

= SfU(I+Λ)−1/2(I+Λ)−1/2UTSf T (70)
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• So we found a square root decomposition of Pa in terms of SfU(I+Λ)−1/2.

• But in order to construct an ensemble from the columns of Sa, its mean has to be zero.

• Solution: we multiply it by UT (which does not change the product SaSaT ):

Sa = SfU(I+Λ)−1/2UT (71)

• For a linear observation operator, the sum of all columns of HSf is zero.

HSf1N×1 = 0

• Thus 1N×1 is a (unnormalized) eigenvector of
(
HSf

)T
R−1HSf with eigenvalue 0:

(
HSf

)T
R−1HSf1N×1 = 0 1N×1 (72)

• If eigenvalues are sorted in Λ, then 1N×1 is the smallest and Nth (last) eigenvalue as
all eigenvalues positive:

UeN =
1√
N
1N×1 (73)

ΛN,N = 0 (74)

where eN is the a vector with all elements equal to zero except that last which is one.

Therefore, it follows that

U(I+Λ)−1/2UT1N×1 = 1N×1 (75)

• Thus the mean of all columns of Sa is zero.

Sa is the square root of Pa:

Pa = SaSaT (76)

The decomposition (62) can also be used in the computation of the Kalman gain K by:

K = Sf
[
I+ (HSf )TR−1HSf

]−1
(HSf )TR−1 (77)

= Sf
[
UUT +UΛUT

]−1
(HSf )TR−1 (78)

= SfU(I+Λ)−1UT (HSf )TR−1 (79)

The ensemble after the analysis will have the following mean:
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xa = xf +K
(
yo −Hxf

)
(80)

Based on the mean xa and the columns of Sa, an ensemble can be reconstructed:

xa(r) = xa +
√
N − 1 (Sa)r (81)

Overview of Kalman filters suitable for large systems

Deduced from the Extended Kalman Filter (→ linearized model for the errors evolution):

• SEEK: Pham et al. (1998). Evolutive error space

• RRSQRT: reduced rank approximation of the square root filter (reformulation of the
Kalman filter)

Ensemble Kalman filters:

• SEIK Pham (2001). Evolutive error space (reformulation of SEEK using an ensemble)

• Ensemble Kalman filter Evensen (1994, 2007)

• Ensemble Transform Kalman Filter (Bishop et al., 2001),

• Ensemble Adjustment Kalman Filter (Anderson, 2001)

• Error-subspace transform Kalman filter (Nerger et al., 2012) (ESTKF)

Exercise

• Compare the results of the linear models using the Extended Kalman Filter and the
Ensemble Kalman Filter.

• Compare the results of the Lorenz 1963 model using the Extended Kalman Filter and
the Ensemble Kalman Filter.
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The need for localization and inflation

• For realistic ocean systems, only a relatively small number of ensemble members can
be calculated.

• → systematically underestimated error variances (Whitaker and Hamill, 2002) (ad-
dressed by inflation)

• → spurious long-range correlations (addressed by localization)

• This can be illustrated also by using random perturbations whose spatial covariance
decreases monotonically as a function of the distance.
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• Localization of the ensemble increment is therefore necessary to filter out spurious.

The need for localization

• Problematic spurious long-range correlations can be highlighted easily when assimilat-
ing a point measurement.

xa = xf +PfHT︸ ︷︷ ︸
single column

(HPfHT +R)−1(yo −Hxf︸ ︷︷ ︸
scalar

)
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• Correction will be proportional to
the covariance between the state
vector at the observed location
and all other model grid points

• Velocity covariance between loca-
tion marked by the magenta circle
and other model grid points

Localization

• Domain localization

• the state vector is decomposed into sub-domains (e.g. single grid point or vertical
column) where the assimilation is performed independently

• Easily applied to parallel computers (Keppenne and Rienecker, 2003; Nerger and
Hiller, 2013)

• To avoid discontinuities in the analysis field, this approach is combined with the
observation localization (Brankart et al., 2003; Barth et al., 2007; Hunt et al.,
2007)

• The weight of distant observations (relative to the part of the state vector to
be updated) is gradually decreased by increasing the error variance (observation
localization or R-localization)

surface

x

y

z
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• Covariance localization:

• Operates on the error covariance matrixP and it is sometimes calledP-localization

• every single observation point is assimilated sequentially and the correction is
filtered by a localization function.

• Less suitable for parallel processing than the domain localization.

Inflation

xa′(r) is the so-called r-th analysis ensemble perturbation: the different between the r-th

analysis ensemble member and the analysis ensemble mean. xb′(r) is defined in an analogous
way for the background ensemble.

• multiplicative inflation (Anderson and Anderson, 1999):

xa′(r) ← αxa′(r) (82)

where α is a positive inflation factor. Issue: where there are no observation, the error
variance is still increased

• additive inflation (Houtekamer and Mitchell, 2005)

xa′(r) ← xa′(r) + d′(r) (83)

where the vector d′ is a random vector of size n with a zero mean. In practice, it
is difficult to come up with a suitable covariance matrix of the random vector d′.
The additive and multiplicative inflation scheme could also be applied to background
ensemble.

• relaxation-to-prior perturbation (Zhang et al., 2004):

xa′(r) ← (1− α)xa′(r) + αxb′(r) (84)

This approach avoids to increase the error variance where there are no observations.

• relaxation-to-prior spread (Whitaker and Hamill, 2012) is a form of multiplicative infla-
tion with a space dependent inflation factor such that the ensemble standard deviation
is relaxed towards the background ensemble standard deviation:

σa ← (1− α)σa + ασb (85)

Every element of the vectors xa′(r) is thus updated according to:

xa
i
′(r) ← xa

i
′(r)

(
α
σb
i − σa

i

σa
i

+ 1

)
(86)
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Kalman smoother

• For a linear system, the Kalman filter provides the most accurate state given all past
observations.

• The Kalman smoother provides the most accurate state for all past and future
observations.

• Formally, one can derive the Kalman smoother by extending the state vector by the
time dimension.

• The error covariances include also then space and time covariances.

P̃ =

 P00 P01 . . . P0Nt

...
...

. . .
...

PNt0 PNt1 . . . PNtNt


• Every block Pij is the covariance of the state vector at time i and j.

Kalman Smoother

• The Kalman Smoother analysis corresponds to the optimal interpolation analysis with
the time-extended state vector.

• Extending the state vector by a time dimension can be implemented easily with en-
semble methods: the vector x corresponds then to model trajectories

• For observations at high temporal frequency one can extend the state vector by several
time instances within e.g. 24 hours and perform a smoother analysis within this time
window and a simple filter analysis from one cycle to the next.

Particle filter

Bayes Theorem

p(x|yo) =
p(yo|x)p(x)

p(yo)
(87)

• p(x|yo): a posteriori pdf, pdf of the model state x given the observations yo.

• p(x): a priori pdf, pdf of the model state x before knowing the observations yo.
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• p(yo|x): probability of a measurement yo if the system is in the state x. For Gaussian
observations errors:

p(yo|x) = A exp
(
(yo − h(x))T R−1 (yo − h(x))

)
(88)

• p(yo): The denominator is just a normalization to ensure that the pdf integrates to
one.

Particle filter

The model pdf is represented by an ensemble (or by particles) x(r) (r = 1, . . . , N):

p(x) =
1

N

K∑
r=1

δ(x− x(r)) (89)

Initially all particles are equally probable, but by comparison to the observations, the
particles who are closer to the observations are more likely than the particles who a further
away from the observations.

p(x|yo) =
1

N

N∑
r=1

wrδ(x− x(r)) (90)

where the weights are given by: wr =
p(yo|x(r))∑N
r=1 p(y

o|x(r))

• Re-sampling: Particles with very low probability are ignored and particles with high
probability are duplicated.

• No Gaussian assumption of the model error is necessary.

• Curse of dimensionality: Large number of particles are needed for high-dimensional
problems.

Sangoma tools

• Sangoma project: http://data-assimilation.net/

• Provides several diagnostics and utilities mainly related to ensemble-based data assim-
ilation:

• Ensemble rank histograms, mutual information, relative entropy

• Ensemble sensitivity of posterior mean to observations in a particle filter

• Array modes and associated quantities

• Brier skill score, CRPS, RCRV
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• Spatially correlated ensemble perturbations

• Perturbation based on EOFs

• Weakly constrained ensemble perturbations (ensemble perturbations that have to
satisfy an a priori linear constraint)

• Empirical Gaussian Anamorphosis (the empirical transformation function such
that a transformed variable follows a Gaussian distribution)

• Observation operator for HF radar surface currents

• Reference implementations of various ensemble analysis schemes

Non-sequential assimilation

• Strong constraints (Qk = 0). 4D-Var, adjoint methods

• Weak constraints (Qk ̸= 0). Representer method

4D-Var

• Minimization of the following cost function:

J(x0) =
(
x0 − xi

)T
Pi−1 (

x0 − xi
)

+
N∑
k=1

(yo
k − hk(xk))

T R−1
k (yo

k − hk(xk))

with xk+1 = fk(xk).

• The constrain is introduced in the cost function with the Lagrangian multiplier

4D-Var

• Gradient of the cost function:

∇x0J = 2 Pi−1 (
x0 − xi

)
− 2 MT

0λ0

is calculated using the adjoint variable λk:

xk+1 = fk(xk)

λk−1 = MT
kλk +HT

kR
−1
k (yo

k − hk(xk))

λN = 0
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• The adjoint model is integrated backwards in time!
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Figure 5: 4D-Var. The cost function is explicitly minimized; Upper panel: the observed
component of the state vector xt (truth), xa (with assimilation) and xb (without assimila-
tion). After 20 iterations, the solution xa is already quite close to the real trajectory xt.
Lower panel: The adjoint variable λ corresponding to the observed part of the state vector.

4D-Var

Init. Cond.,
bound. Cond.,
parameters (u)

- Models fk
and hk

-
Observable
model
predictions (v)

v = g(u)

A perturbation on the inputs δu is linked to the perturbations on the outputs δv by:

δv = G δu with Gij =
∂vi

∂uj
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4D-Var

Cost function:
J(v) = J [g(u)]

The sensitivity of J relative to u is obtained by the gradient of the cost function J :

∇uJ = GT ∇vJ

For a time integration, one has:

g = gN ◦ . . . g2 ◦ g1
G = GN . . .G2G1

GT = GT
1G

T
2 . . .GT

N

Incremental formulation

• Efficient algorithm to minimize a quadratic function

• Model and observation operators are linearized around first guess of the model trajec-
tory → incremental formulation: (Courtier et al., 1994; Courtier, 1997)

J(δx0) =
(
x0 + δx0 − xi

)T
Pi−1 (

x0 + δx0 − xi
)

+
N∑
k=1

(yo
k − hk(xk)−Hkδxk)

T R−1
k (yo

k − hk(xk)−Hkδxk)

with xk+1 = fk(xk) and δxk+1 = Mkδxk.

• Minimize this function using the conjugate gradient method (inner loops)

• After the minimum is reached, a new model trajectory is computed with the full non-
linear model

• The model and observation operator are linearized around this new trajectory and the
whole procedure is repeated (outer loops)
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non−linear model

convergence?

gradient

adjoint model

tangen linear model
o
u
te

r 
lo

o
p

in
n
e
r 

lo
o
p

xn+1 = fn(xn)

δxn+1 = Mnδxn

∇x0J

λn−1 = MT
nλn +HT

nR
−1
n (...)
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Conjugate gradient method

x0

x • Minimizing f(x) = 1
2
xTAx − xTb is

equivalent to solving Ax = b for x.

• A is a symmetric and positive defined
matrix.

• All search directions pi are “conjugate”
(pT

i Apj = 0 if i ̸= j).

• Conjugate gradient method converges
faster than the steepest descent method.

Derivation of tangent linear

• Model can be broken down to a series instructions f (p) where every instruction corre-
sponds to a line of code

f(x) = f (p)(. . . f (2)(f (1)(x))) (91)

• By applying the chain-rule, the tangent linear of f is:

F = F(p) . . .F(2)F(1) (92)

where Fij =
∂fi
∂xj

and F
(p)
ij =

∂f
(p)
i

∂xj

• Let’s consider a simple statement

d = ab+ c (93)

• This statement can be seen as a function f with input a, b and c.
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• The tangent linear code is obtained by differentiation of f :

δf =
∂f

∂a
δa+

∂f

∂b
δb+

∂f

∂c
δc (94)

• For the example statement, one obtains:

δd = bδa+ aδb+ δc (95)

Derivation of adjoint

• The adjoint is the transpose of the tangent linear model

FT = F(1)TF(2)T . . .F(p)T (96)

• The example statement can also be written in matrix form:
δa
δb
δc
δd

 =


1 0 0 0
0 1 0 0
0 0 1 0
b a 1 0




δa
δb
δc
δd


• The adjoint variables δa∗ are governed by the transpose of this matrix:

δa∗

δb∗

δc∗

δd∗

 =


1 0 0 b
0 1 0 a
0 0 1 1
0 0 0 0




δa∗

δb∗

δc∗

δd∗


or

δa∗ = δa∗ + b δd∗

δb∗ = δb∗ + a δd∗

δc∗ = δc∗ + δd∗

δd∗ = 0

• For an adjoint integration one needs to have the state of the non-linear forward model

• All loops are reversed

• Automatic adjoint generators exist TAF, ADIFOR, (TAMC, OpenAD, ODYSSEE),
Tapenade
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Demo

• Use the 4DVar method with the linear model and compare the results to the Kalman
Filter

• Use the Lorenz model by varying number of time steps

• http://data-assimilation.net/Tools/AssimDemo/
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Cost function of the Lorenz Model

• Long assimilation window: more observations, but complex cost function

• Short assimilation window: less observations, but easier to minimize cost function

• Test: assimilate every model time step, true initial condition is x = (5, 0, 0)

• Error variance of initial condition and observations is 1.

log of Cost function (x3 = 0)
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Lorenz model (with 20 time steps)
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log of Cost function (x3 = 0)
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The representer method

• Hypothesis: fk and hk are linear

• Cost function:

J(x0, . . . ,xN) =
(
x0 − xi

)T
Pi−1 (

x0 − xi
)

+
N∑
k=1

(yo
k −Hkxk)

T Rk
−1 (yo

k −Hkxk)

+
N−1∑
k=0

(xk+1 −Mkxk − Fk)Qk
−1 (xk+1 −Mkxk − Fk)

Dual formulation

The optimal interpolation update:

xa = xf +K
(
yo −Hxf

)
(97)

K = PfHT
(
HPfHT +R

)−1
(98)

Inverting a matrix of size m×m can be prohibitive. Inverting this matrix and multipling
the inverse by the innovation vector yo −Hxf is equivalent in solving the following linear
system for the vector w:

(HPfHT +R)w = yo −Hxf (99)

The system can be solved by minimizing the following cost function for w:

J(w) =
1

2
wT

(
HPfHT +R

)
w −wT

(
yo −Hxf

)
(100)

The final analysis in then obtained by:

xa = xf +PfHTw (101)

The Dual 4D Var problem can be formally derived from the Dual 3D Var assembling
all observations into a single observation vector and the observation operator would then
model operator so that the observation are compared to the model results from the right
time. Applying this observation operator to a given vector x would thus require to run the
foreward model and extracting the observed part of the model state vector. The product
between the adjoint of the operation operator amounts of essentially running the adjoint of
the model.

In addition the weak-constrained 4D Var problem can be derived by formally extending
the vector x with the model error ηn.
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The representer method

First guess xb
k

xb
k+1 = Mkx

b
k + Fk

x0 = xi

Adjoint of the rep-
resenters Λkk′

Λk−1n′ = MT
kΛkk′ +HT

k δkk′

ΛNk′ = 0

Representers R̃kk′

R̃k+1n′ = MkR̃kk′ +QkΛkk′

R̃0n′ = PiMT
0Λ0n′

Corrections bk

b =
(
R+HR̃

)−1 (
yo −Hxb

)
y
oT

= (y
o
1
T
, . . . ,y

o
N

T
)

Hx
bT

= (H1x
b
1
T
, . . . ,HNx

b
N

T
)

b
T

= (b
T
1 , . . . ,b

T
N )

R = diag (R1, . . . ,RN )

HR̃ =


H1R̃11 · · · HN R̃N1

.

.

.
.
.
.

.

.

.

H1R̃1N · · · HN R̃NN


Analysis xn

xk+1 = Mkxk + Fk +Qkλk

x0 = xi +PiMT
0λ0

λk−1 = MT
kλk +HT

kbk

λN = 0

Interpretation

• The representers are covariances:

R̃kk′ = E[(xb
k − xt

k)(Hn′xb
n′ −Hn′xt

n′)T ]

• Analysis with the representer method = optimal interpolation with the time coordinate
included in the state vector

• nm+ 2 integrations with numerical model nm+ 1 integration with the adjoint model.

• Method becomes prohibitive if m is large (satellite data)
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Application to assimilation of HF
Radar currents / German Bight

Outline

• Weakly constrained ensemble perturbations

• Example 1: Estimation of tidal boundary conditions using HF

radar observations

• Example 2: Estimation of wind forcing using HF radar observa-

tions
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Weakly constrained ensemble perturbations

• For ensemble schemes, unknown initial and boundary conditions, parameters, ... have
to be perturbed within their range of uncertainty.

• By validation of the model with observations one can obtain an estimate of the mag-
nitude of the perturbation.

• But which spatial structure?

• Method to create ensemble perturbation that satisfy a priori linear constraints

• Example of constraints:

• geostrophic equilibrium

• zero horizontal divergence of surface winds

• stationary solution to the advection-diffusion equation

• the linear shallow water equations

• perturbations should be close to a subspace defined by e.g. empirical orthogonal
functions (EOFs).

• ...

Probability of a perturbation

• To describe our a priori knowledge of what a realistic perturbation is, we introduce a
cost function J , similar to the cost function used in variational analysis techniques:

J(x) = “linear balance”2 + “smooth”2 + “limited amplitude”2

• The cost function can be used to define the probability of a perturbation x (e.g. Kalnay,
2002):

p(x) = α exp (−J(x)) (102)

• Perturbations are derived from the Hessian matrix of J (Barth et al., 2009).
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Impact of barriers

• The “smoothness” constraint is implemented through a diffusion operator (laplacian),
it takes thus the land-sea mask into account

• Ensemble covariance using “classical” Fourier modes (a) and constrained perturbations
based on the land-sea mask (b).
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Harmonic shallow water equations

• For tidal models, perturbations should be approximately a harmonic solution to the
shallow water equations
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10e-5

8e-5
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2e-5

0

-2e-5

• Horizontal covariance of the constrained perturbations between the point near the open
boundary marked by a black dot and all other grid points.

German Bight model

• General Estuarine Ocean Model (GETM Burchard and Bolding, 2002)

• 3-D primitive equations with a free-surface

• 21 σ levels, resolution of about 0.9 km.

• nested in a 5-km resolution North Sea-Baltic Sea model

• ETOPO-1 topography with observations from BSH

• Atmospheric fluxes are estimated by the bulk formulation using 6-hourly ECMWF
re-analysis

• Implementation by GKSS (Staneva et al., 2009).

61



HF radar observations
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• Spatial coverage of the HF radar
zonal and meridional surface veloc-
ity observations

• The number of samples available at
each observation grid point is color–
coded according to the color-bar.

• The crosses show the location of HF
radar antennas.

• The operating frequency:
29.85MHz (coupling to 5.02m
long ocean waves).

• HF Radar measurements from
University of Hamburg (PRISMA
project)

Empirical Ocean Tides (EOT08a)
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• M2 amplitude (in m) and phase (in degrees) of EOT08a for the German Bight based
on altimetry.

• complex tidal parameters are assimilated
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Smoother scheme

• M2 tidal boundary conditions are perturbed within the range of their uncertainty
to create a ensemble with 51 members. Perturbations are constrained by the linear
shallow water equations.

• The GETM model is run for 40 days with each of those perturbed boundary values.

• All HF radar observations at any time instance within the integration period and
the EOT parameters are grouped in the observation vector (vector yo) with their
corresponding error covariance (matrix R) estimated by cross-validation.

• Observations are extracted from perturbed model solution (vector h(x(k))).

• Schematically, the non-linear operator h(·) performs the following operations:

h(·) = Interpolation to obs. location ◦Model integration with perturbed forcing
(103)
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Smoother scheme

• The optimal perturbation is given the Kalman analysis (using non-linear observation
operators as in Chen and Snyder (2007)):

xa = xb +A (B+R)−1 (yo − h(xb)
)

(104)

• where the matrices A and B are covariances estimated from the ensemble.

A = cov(xb, h(xb)) =
〈
(x− ⟨x⟩) (h(x)− ⟨h(x)⟩)T

〉
(105)

B = cov(h(xb), h(xb)) =
〈
(h(x)− ⟨h(x)⟩) (h(x)− ⟨h(x)⟩)T

〉
(106)

where ⟨·⟩ is the ensemble average.

• But covariance matrices do not need to be formed explicitly. Analysis is performed in
the subspace defined by the ensemble members.

Smoother scheme

• For a linear model and an infinite large ensemble, equation (104) minimizes,

J(x) = (x− xb)TPb−1
(x− xb) + (yo − h(x))TR−1(yo − h(x)) (107)

or

J(x) = (x− xb)TPb−1
(x− xb) +

∑
n

(yo
n − (h(x)n))

TRn
−1(yo

n − (h(x)n)) (108)

where n references to the indexed quantifies at time n. This is the cost function from
which 4D-Var and Kalman Smoother can be derived.

• Approach is closely related to Ensemble Smoother (van Leeuwen, 2001), 4D-EnKF
(Hunt et al., 2007) and AEnKF (Sakov et al., 2010) where model trajectories instead
of model states are optimized and to the Green’s method with stochastic “search
directions”

• The model is rerun with the optimized boundary values for 60 days.
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RMS difference

RMS2 = lim
T→∞

1

T

∫ T

0

(A cos(ωt− ϕ)− A′ cos(ωt− ϕ′))2dt (109)

=
A2 + A′2

2
− AA′ cos(ϕ− ϕ′) (110)
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RMS difference between surface current observations due to the M2 tides and the corre-
sponding model results without (left panel) and with assimilation (right panel).
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• RMS difference between surface current observations (not used in the assimilation)
due to the M2 tides and the corresponding model results without (left panel) and with
assimilation (right panel).
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• Analysis RMS compared to unassimilated data is only 0.002 m/s larger than compared
to assimilated data

Tide gage observations

Helgoland Cuxhaven
amplitude phase RMS amplitude phase RMS

Observations 1.13 304 1.36 334
Free 0.81 318 0.28 0.95 15 0.63

Assimilation 0.97 302 0.12 1.08 2 0.46

Table 1: Comparison with tide gage observations. Amplitude is in m and phase in degrees.

• Tide gage observations from different time period → only comparison of tidal param-
eters

• Helgoland within the area covered by radar, but not Cuxhaven

• The assimilation reduces the RMS error by a factor of 2 for Helgoland and by a factor
of 1.4 for Cuxhaven (Barth et al., 2010).

Wind estimation from HF radar observations

• Ensemble of 100 wind forcings are created (by using a Fourier decomposition)

• estimation vector x: u- and v- component of wind forcing

• observations: yo: surface currents

• “observation operator” h(·):

h(·) = Interpolation to obs. location ◦Model integration with perturbed wind (111)
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Figure 6: Measured wind speed, wind speed from ECMWF and analyzed wind speed at
Helgoland. Units are m/s.

• RMS difference between analyzed winds and ECMWF winds (averaged over time)

• RMS difference scaled by wind standard deviation (Barth et al., 2011)

Summary

• Ensemble assimilation methods require realistic perturbation schemes (error covari-
ances)

• Use of dynamical relationships (similar to Variational analysis)

• Optimizing tidal boundary conditions and wind forcing with a smoother scheme

• HF radar observation is a very valuable data set for constraining regional and coastal
models
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Figure 7: Measured wind speed, wind speed from ECMWF and analyzed wind speed at Sylt.
Units are m/s.
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Ligurian Sea Model

• ROMS nested (off-line)
in Mediterranean Ocean
Forecasting System

• 1/60 degree resolution and
32 vertical levels

• Currents: Western &
Eastern Corsican Current,
Northern Current, inertial
oscillation, mesoscale
currents

• Two WERA HF radar
systems (Palmaria, San
Rossore) by NATO-
CMRE from 2009 to
2010.
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Observations

• Frequency of ν = 12.359 MHz and coupled to a wave length of λb = 12.13 m,

• Radial currents are measured and used for the assimilation

• Angular resolution of 6 degrees, radial resolution of 2.4 km

• Currents are averaged over 1 h
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Radial currents on 2010-07-06 21:30 relative to the Palmaria site: left panel shows WERA
measurements and right panel shows ROMS results without assimilation.

Corrections

• To correct the eddy field
relatively large ensembles
are needed

• If no ensemble member
predicts an eddy at a
given location, the ensem-
ble analysis will not be
able to introduce an eddy
at a given location

(Vandenbulcke et al., 2017)
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Temporal covariances

• By including several time
instances into a state-
vector, one can also anal-
yse the temporal covari-
ance

• Here: inertial oscillations

1 2412

Summary of sequential methods

?

?

?

?

Kalman smoother, 4D-Var, Representer method

Kalman filter

Optimal Interpolation, 3D-Var

Nudging

Direct Insertion

only past data

constant Pf
k

R and Pf
k diagonal

R→ 0
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Barth, A., A. Alvera-Azcárate, K.-W. Gurgel, J. Staneva, A. Port, J.-M. Beckers, and E. V.
Stanev, 2010: Ensemble perturbation smoother for optimizing tidal boundary conditions
by assimilation of High-Frequency radar surface currents - application to the German
Bight. Ocean Science, 6, 161–178, doi:10.5194/os-6-161-2010.
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