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Chapter 1

Introduction

Purpose of ocean models

» developed to understand and to predict the 3-D ocean circulation, as well as the distribution of temperature,
salinity and biogeochemical variables.

» Knowing the ocean circulation allows to compute transports, which are important for e.g. assessing/pre-
dicting biological activity, climate interactions and transport of pollutants.
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Figure 1.1: Oil spill forecast by METEO-FRANCE using currents from Mercator (adapted from Daniel, 2004)



El Nifio Southern Oscillation Model Predictions of ENSO from Oct 2011
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Figure 1.2: Left: SST (sea surface temperature) anomaly during El Nifio (McPhaden et al., 2006). Right:
SST prediction in the Nifio 3.4 region (http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.
html)
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Chapter 2

Equations for hydrodynamic flow

Contents
2.1 Navier-Stokes equations . . . . . . . . . .t i e e e e e e e e e e e e e e e e 8
2.2 Non-hydrostatic primitive equations . . . . . . . . . . . L. e e e e e 12
2.3 Primitive equations . . . . . . . . L L L L L e e e e e e e e e e e e e e e e e e 12
2.4 Shallow water equations . . . . . . . . . . L. L. L e e e e e e e e e e e e e 14
2.5 Quasi-Geostrophic dynamics . . . . . . . . . . L L e e e e e 16

Navier-Stokes equations

The Navier-Stokes equations provide the basis for the simplified and approximated set of equations used in nu-
merical ocean model. The terms in the Navier-Stokes equations can be interpreted as different processes. The



approximations are justified by introducing scales of variations which allow to estimate the magnitude of these
processes and neglect some terms under the given conditions.

dp
. = 2.1
TPV 0 (2.1)

dv
pa +20Q ANV = —Vp+pge,+V-FY (22)

where ) is the angular velocity vector of the Earth and FV viscosity tensor of the flow. The operator V and
the material derivative are defined as:

0 0 0
Vo= ey teg, Teg, (2:3)
d 0 0 0 0
@ = oa e Ve TVas (24)

The density p is computed using the state equations and the internal energy, salinity and pressure. Instead
using internal energy, potential temperature is used which is related directly to internal energy.

p=p(T,S,p) (2.5)

Temperature and salinity are governed by advection-diffusion equations:

dr
Pt

ds
Pat

= V.F7 (2.6)

= V.F? (2.7)



Exercise 1:

Give an interpretation of each term in the Navier-Stokes equations for a rotating fluid
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Figure 2.1: Different level of approximation of geophysical fluids



2.2. Non-hydrostatic primitive equations

The non-hydrostatic primitive equations are obtained by applying the Boussinesq approximation to the Navier-
Stokes equations. In the Boussinesq approximation, density variations are neglected except for gravity. Boussinesq
approximation removes sound waves in the ocean which would otherwise require a very small time step. Under
the Boussinesq approximation, the total mass of the fluid is no longer conserved but the total volume is. This
can introduces some difficulties in modeling effects such as sea level rise due to thermal expansion.

V-v 0 (2.8)

dv 1
— +2Q A -
dt + v £o

1
Vp+ e, + —V.F" (2.9)
Po Po

where pg the reference density.
Exercise 2:

How are the maximum allowable time step and wave speed linked?

2.3. Primitive equations

In most circumstances, the vertical momentum equation is dominated by the pressure gradient and gravity. In the
hydrostatic approximation, the pressure gradient is assumed to balance perfectly gravity and all other terms are
neglected. The vertical velocity is no longer computer prognostically, but it is diagnosed based on the continuity

equation.



Vv = 0
d 1 1
& 120Au = ——Vyp+—V.F"
dt Po Po
o _

The differential operator Vy, is defined as:

0

Vh = ew%—l—eya—y

The velocity v is decomposed into its horizontal u and vertical w component:

Vv =u-+ we,

Note:

(2.10)
(2.11)

(2.12)

(2.13)

(2.14)

» If one subtracts from the pressure p the hydrostatic pressure due to a constant density pg, one obtains the

generalized pressure (apart from a constant factor py):

q:£+gz
Po

where g is gravitational acceleration. The buoyancy b is given by the state equation p(T,.S):

Po

(2.15)

(2.16)



Under the hydrostatic approximation, the generalized pressure and the buoyancy are related by:

9q _

5 = (2.17)

Instead of working with pressure p and density p, some ocean models work with generalized pressure g and
buoyancy b. The effect of rounding errors due to the finite precision of floating number is smaller with the
later (Can you explain why the rounding error is smaller?).

» Since the vertical velocity is much smaller than the horizontal velocity, the Coriolis force is generally simplified

as:
2NV = fe, Au (2.18)

where [ is called the Coriolis frequency.

» If a model is hydrostatic, non-hydrostatic effects such as deep water formation have to be parametrized.

2.4. Shallow water equations

If the aspect ratio is small,

== < 1 (2.19)

and if the fluid is homogeneous, then the depth-integrated current U and V' are governed by:



L= 7T 2.2
ot + Ox + oy 0 (2.20)
dU an
dv on
ar +fU = —g@ + Ty (2.22)

where 7 is surface height, (7., 7,) is the total friction (surface and bottom friction), and material derivative
is now:

d 0 0] 0
at ot "or oy (2.23)
If the fluid is not homogeneous and its density variations are known, then an additional term called the baro-
clinic pressure gradient is included in equations (2.21) and (2.22). The shallow water equations are also solved in
three-dimensional numerical ocean models to simulate the evolution of the free surface.

The rigid lid approximation neglects the sea surface height variations in the continuity equation:

ou oV
=0 2.24
or 0Oy ( )

The surface elevation is no longer computed prognostically, but is chosen such that the previous is equations
are satisfied. This approximations removes surface gravity waves. Surface gravity waves are fast waves (wave
speed of y/gH) and introduce thus a sever CLF stability criterion.



2.5. Quasi-Geostrophic dynamics

Quasi-Geostrophic equations approximate the flow of the ocean if the temporal Rossby number, the Rossby number
and the Ekman number are much smaller than one,

_ Acceleration _ 1

Ror = Coriolis = fT <1 (225)
_ Inertia _ 2

Ro ~ Coriolis — fL <1 (2:26)
_ Vert. friction _ v

Bk = Coriolis  —  fH?2 <1 (2.27)

In this case, the pressure gradient is mostly balanced by the Coriolis force (geostrophic equilibrium). It is also
assumed that the density variations p’(z, vy, z,t) around a average density profile p(z) are small:

p=p(z)+ p’(:c,y,z,t) Ip| > |P/| (2.28)

Due to the hydrostatic equilibrium, the pressure can be decomposed in a similar way:

p=0(2) +'(2,y,2t)  |p|> | (2.29)
The quasi-geostrophic equations are derived by substituting horizontal velocity components by the correspond-

ing pressure gradient in the momentum equations, which gives a evolution equations for the potential vorticity ¢
and an equations for the stream function ¢:

) = vV (2:30)

ot 022
fg o

0
q = VQl/) + 9 (]\ﬂi?z) + Boy (2-31)



where the Jacobian J is defined by:

Oy Oq O Oq
J(,q) = 5oy By on (2.32)

The velocity components, pressure and density are obtained by:

_ _% (2.33)
v o= g—i} (2.34)
w o= -0 (gfai +J(¢,§j>) (2.35)
Po= pofor (236)
po— b (2.37)

Since only one evolution equations has to be solved, the models based on the quasi-geostrophic equations
are numerically more efficient than model based on the primitive equations. However, the approximation need to
derive the quasi-geostrophic equations limit their applicability.



Exercise 3:

We consider the 2d-quasi-geostrophic system with viscosity on an f-plane governed by:

9
4 Jw,q) = ApV2q+BuVig

ot
qg = V*

where Ay = 0.5 m?/s and By = 1.6015 10'° m*/s. The initial condition is given by:

7 = r(l+4+ecos(20))/L
Yo = exp(—72)L2wy

(2.38)
(2.39)

(2.40)
(2.41)

where r and 6 are the polar coordinates. The parameter e = 0.03 introduces a perturbation of the eddy’s
structure (L = 100 km, wo = 1075 s=! ). The domain is a square [—-10L,10L] x [—10L,10L]. As time

step 1000 s is suggested. For simplicity, ¢ and v are prescribed to zero at the boundary.

Exercise from “Introduction to Geophysical Fluid Dynamics” by B. Cushman-Roisin and J.-M. Beckers.



Chapter 3

Boundary conditions
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The equation of the previous chapter could not be solved for a fluid with finite extent without prescribing
what happen at the boundary of the fluid.



3.1. Surface boundary conditions

At the ocean surface for example, the ocean and atmosphere exchange heat, water and momentum. These
exchanges are prescribed at surface boundary conditions.

3.1.1. The momentum flux
The winds at the air-sea interface drag the surface water along its direction. This wind stress 7 gives the
momentum flux between ocean and atmosphere and it is parameterized by:
7= Cppalual|ua (31)

Pa is the air density and u, the wind vector at the reference level. The drag coefficient Cp is parameterized
(e.g Kondo, 1975). The momentum flux is a vector with the same direction of the wind vector.

Exercise 4:

Equation (3.1) actually assumes that the ocean currents are much smaller than the winds (which is in
general a realistic assumption). Propose a modification of this equation to take current speed into account.

3.1.2. Heat flux

The exchange of heat modifies the temperature of the ocean since the temperature is directly related to the
internal energy E;:

E; = cppT (3.2)



where c,, is the heat capacity at constant pressure and p is the density of sea-water. The turbulent temperature
fluxes at the ocean surface are prescribed through the ocean-atmosphere exchange:

or_a

where Q! is the net thermal energy reaching the ocean surface per unit of length squared. Q! is the sum of:

3.1.2.1. Net long-wave radiation

» corresponds to the infrared radiation that the ocean surface emits similar to the back-body radiation at a
given temperature.

» can be reflected back to the ocean by the presence of clouds.
» the atmosphere emits also long-wave radiation that it partially absorbed by the ocean surface.

» the net long-wave radiation is the total flux due to these effects and it depends thus mainly on sea-surface
temperature, air temperature and cloud fraction.

3.1.2.2. Latent heat flux

» due to a difference in the water vapor content of the air at the ocean surface and at the reference level.
» this gradient induces evaporation or condensation.

» to this mass transfer corresponds a heat exchange, which is equal to the rate of vaporisation times the
latent heat of evaporation L.



3.1.2.3. Sensible heat flux
» due to the temperature difference between the air at the ocean surface and the air at the reference level.

» heat exchanged by conduction and is proportional to this temperature gradient, the heat conductivity of
the ocean surface and the specific heat of air at constant pressure

» for the air temperature at the ocean surface, the sea surface is taken assuming a local equilibrium.

The latent heat flux and the sensible heat flux are parameterized by classical bulk turbulent transfer formulas
(Rosati and Miyakoda, 1988; Castellari et al., 1998):

QL = CLLpaHua”(Qs_Qa) (3'4)
Qu = Cucpopalluall (T, = T.) (35)

where p, is the air density, u, is the wind vector, ¢s is the specific humidity of saturated air at T, ¢, is
specific humidity of air and ¢, the heat capacity of air at constant pressure. For an air pressure p, expressed in
hPa, g, is obtained by the air temperature T;, and the relative humidity r and ¢, is obtained from the sea surface
temperature T by:

€
qa = Tesat(Ta)}T (3.6)
€

4 = esat(Ts)— (3.7)
Pa

where ¢ = 0.622 is the ratio of the gas constants of dry air and water vapor (see appendix B). Expressions (3.4)
and (3.5) are well established bulk parameterizations for the latent and sensible heat flux. Matter of discussions are
however the exchange coefficient Cgy (Stanton number) and C'r (Dalton Number). Numerous parameterizations
are proposed in the literature (e.g Castellari et al., 1998; Kondo, 1975).



3.1.2.4. The solar heat flux
» The solar (or short-wave) heat flux is sometimes included in the net heat flux at the ocean surface.
» However, the solar energy penetrates into the water column and heat the water not only at the surface.

» The solar heat flux is thus more realistically described as a energy source in the temperature equations:

oT 1 oI

By considering only two visible frequencies, the radiation flux I as a function of depth can be described by
the following equation (z = 0 at the surface and negative in water):

I(z) = |Qs| (Ae”” + (1 — A) e%) (3.9)

where @), is the light intensity at the surface, A = 0.58 is the fraction long-wave solar energy and ¢g; =
0.35 m~! and g2 = 23.0 m~! are the absorption coefficients of the short-wave (blue) and long-wave (red) solar
energy respectively of the visible spectrum. This distribution of the light intensity corresponds to the water of
type | according to the classification of Jerlov (1968).

Exercise 5:

Explain on the basis of equation (3.9) why objects immersed in the ocean appear blue.



3.2. Bottom boundary conditions

» The ocean floor is generally treated as impermeable boundary.

» The velocity normal to the ocean floor is set to zero.

» Similar to the air-sea boundary, the ocean floor also exerts a friction on the flow parallel to ocean flow. This
friction is often parameterized a quadratic or logarithmic friction laws.

» Bottom friction is crucial for tidal simulation.

» Prescribing the horizontal velocity components to zero is only a possibility if the bottom boundary layer is
well resolved.

» Analytical ocean models use in general a linear bottom drag not because it is more realistic, but because it
is much easier to obtain a analytical solution.

Exercise 6:

Explain why bottom friction is more important for simulating tides than for the general ocean circulation.

When a numerical ocean model is coupled to a sediment transport models, the bottom floor itself can vary in
time over sufficiently long time scales.



3.3.
3.3.1.

3.3.2.

Lateral boundary condition

Coast line

Formally, the later boundary at the coastline is similar to the bottom boundary condition. The coastline is
generally treated as a wall. The velocity perpendicular to the coast-line is zero. Different options for the boundary
conditions for the flow parallel to the coast-line are possible:

» no-slip: The velocity tangent to the coastline is set to zero (if lateral boundary layer is resolved).

» lateral drag: Turbulent viscosity is prescribed at the coastline, for example proportional to the square of the
velocity (if later boundary layer is not resolved).

» free slip: The flow moves freely parallel to the coast (applicable if later boundary layer is much smaller than
the grid size such that its effect can be ignored).

Rivers represent a fresh-water flux into the model domain. They can be represented as a boundary condition
with prescribed salinity (and possibly temperature) and velocity. Rivers can also be modeled as a point source for
salinity (and temperature) in the evolution equation of the tracers.

For applications such as storm surge modeling, the coastline can move due to inundation and the retreat of
the water. Grid-cells can thus be either wet or dry. Special wetting and drying scheme have been developed
for these applications. The challenge of these methods is to provide a numerical stable and volume conserving
scheme.

Open-ocean boundary conditions

For high-resolution application, only a small portion of the global ocean can be covered. In these cases, it is
necessary to introduce boundary conditions at the open-sea boundary.



3.3.2.1. Dirichlet boundary conditions

The simplest open-ocean boundary condition is to prescribe the values of the model variables at the open boundary
(Dirichlet or clamped boundary conditions).

¢ = ¢ at the open-boundary (3.10)

where ¢ is any model variable. This approach however is rarely used since it sufferers from several drawbacks:
» only in rare cases there are sufficient observations to provide ¢&<t (a larger-scale model is thus often used)
» waves approaching the open boundary are in general reflected at the open boundary

» if the external data is not compatible with the model results at the boundary (due to problems in the
model or in the external data) a spurious boundary layer is created with strong gradients. A strong spurious
density gradient generate a strong spurious geostrophic flow which exacerbate the problem and can lead to
numerical instabilities.

3.3.2.2. Radiation boundary conditions

To address the problem of wave reflection, the radiation boundary condition are constructed to let a wave propagate
freely out of the model domain:

op 09 _

where n is the dimension perpendicular to the open-boundary and c is the wave propagation speed. For the
Sommerfeld condition, c¢ is constant and it must be determined a priori. Orlanski (1976) proposed a scheme where
the propagation speed is determined by the flow one grid point from the open boundary and at the previous time
step by:

_ 99,00
=%/ (3.12)



3.3.2.3.

3.3.2.4.

The method returns the correct propagation speed for a single wave (propagating at a constant speed) reach-
ing the boundary at normal incidence. But the scheme can be problematic if the solution contains several waves
at different propagation speed.

External data can be included in the radiation boundary condition by introducing an relaxation term.

96 | 06 _ ¢

—+c—=— 3.13

ot + on T ( )
where 7 is the relaxation time-scale. The smaller the relaxation time-scale, the stronger the model is forced

by the external data. The relaxation time-scale is in general adjusted to reflect the accuracy of the external data.

Flow relaxation

To allow a smoother transition between the external data and the model results, Davis (1976) introduced the
flow relaxation method: the relaxation term is not only active at the open-boundary but also in some zone near
the boundary. The relaxation is also added to the prognostic equations:

96 ™ —¢
% o (3.14)

The coefficient 1/7(z,y) defines the flow relaxation zone and is only non-zero near the boundary.

Flather boundary condition

These previous boundary conditions do not take the dynamical relationship between the variables into account.
(Flather, 1976) proposed a boundary condition for the shallow water equations. The propagation of a surface
gravity wave approaching a boundary is described as:

on —~on



where h is the water depth. The 1-D approximation of the continuity equations can be written as:

on o,
o + hﬁTL =0 (3.16)

By subtracting the previous equations, one obtains

% (vn - \/gn) =0 (3.17)

By integrating this equations across the open boundary, one obtain the Flather-boundary condition:

_ g —ext 9 ext
_ 2y = —./Z 1
= (318)

The Flather boundary condition provides only one constrain for two variables (elevation and normal velocity).
The Flather boundary condition is often augmented by one of the boundary condition proposed by Chapman
(1985), such as:

w1 _ T+ ety

3.19

where 1, = \/ghAATt, b is the grid index of the model boundary, b+ 1 is the index of the first grid point inside
the model domain. This boundary condition can be obtained discretizing equations (3.15) using finite differences.

Concluding remarks for open boundaries:

» A more rigorous framework for deriving open boundary condition is the method of characteristics. The
linearized system of equations are transformed into a system of independent equations for the characteristics.
Each of these characteristics has its own propagation speed. The sign of the propagation speed at the
boundary determines if it is an incoming or out-coming characteristic. An interesting discussion can be
found in (Blayo and Debreu, 2005).



» An open-ocean boundary conditions for the primitive equations is a delicate task since they admit a broad
spectrum of waves. Barotropic waves are in general faster than the ocean currents (sub-critical regime)
while high order internal waves are slower than ocean currents (super-critical regime).

» The boundary condition play also a crucial role in model nesting: a coarse-grid model provides boundary
condition of a fine-grid model. In one-way nesting, the coarse-grid model is independent of the fine-grid
model. If in turn, the fine-grid model results are incorporated into the coarse-grid model one speaks of
two-way nesting.
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Chapter 4

Model grids
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» For a stratified fluid such as the ocean, the representation of gravity is crucial.

» In the vast majority in ocean models, the model grid lines are vertically aligned because of the the dominance
of later versus vertical transport and hydrostatic balance.

» The horizontal and vertical grid are therefore be considered separately as two successive steps to generate
the tri-dimensional model grid.

4.1. Vertical coordinate

The choice of vertical coordinate system is the single most important aspect of an ocean model's design (Chas-
signet and Malanotte-Rizzoli, 2000; Chassignet et al., 2000).

Different regimes are found in the vertical that a numerical ocean model has to simulated and a vertical
coordinate has to resolve:

» Surface mixed layer: higher resolution near the surface is necessary to represent air-sea heat, fresh-water
and momentum flux. Intense turbulent mixing and non-hydrostatic convection takes place in this weakly
stratified layer. Those processes are in general parameterized. The currents in this layer are strong affected
by the wind stress (surface Ekman layer). Below this layer, large temperature and salinity variation are in
general observed (thermocline and halocline)

» Ocean interior: this part of the water column is in general well stratified. This stratification constrain the
movement of tracers along direction of constant density. Water mass properties are thus maintained over
very long time scales.

» Ocean bottom: bottom boundary layer exert friction on the overlying fluid. This is especially important for
shallow areas. In some places, dense water masses flows down along the ocean floor. These overflows are



crucial in the formation of deep water. The bottom depth (i.e. the geometry of the basin) itself is also very
important since the flow tends to follow lines of constant f/H (under unstratified conditions).
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Figure 4.1: Vertical section of the WFS ROMS model (http://ocgmodl.marine.usf.edu/WFS)
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4.1.1. General coordinate transformation

The easiest way to discretize the water column is to use the depth. But this is only one possibility. First, we
examine the general coordinate system transformation (x,y, z,t) — («/,y/, 2/, t'):

"= g (4.1)
y =y (4.2)
2= 2(x,y,zt) (4.3)
o=t (4.4)

The transformed variable z’ may vary not only in space but also with time. This transformations is only
invertible if 2’ is a uniformly increasing or decreasing function of z. We need now to express the primitive
equations in the transformed coordinate system. Following equation (A.12) of appendix A, the derivative are
transformed as:

!
!/

The derivative in z is not simply equal to the derivative in 2’. Indeed, the derivative in x is taken for constant
z while the derivative in 2’ is taken along constant z’. Since z’ may depend on z, both are not necessarily equal.
Note also the similarity in the transforming of the derivatives in x, y and ¢.



A central quantity in coordinate transformation is the Jacobian. The Jacobian of this transformation is

0z
J= B (4.9)
The Jacobian corresponds to the local stretching of the new coordinate system relative to the old coordinate
system.
The material derivative is often used to express the primitive equations. In cartesian coordinate, it is defined

by:

d_of of = Of of

dt_8t+u83:+v8y+w8z (4.10)
In the transformed coordinate, the material derivative becomes:

4 _9f uaf —H)ﬁ—i—wg (4.11)

dt ot or' Oy 0z
where w is defined by:
0z 07 0z 07
_ 0z 412
Y= T Ty T s (4.12)

The first three terms of the rhs of the previous equations correspond to the material derivative of the surfaces
of constant z’. Jw is thus the movement of the fluid relative to the surfaces of constant 2’
The volume conservations

ou Ov Ow
ox * oy * 0z 0 (4.13)
becomes
oJ 0 0 0



with the volume conservation, the material derivative for a scalar f multiplied by the Jacobian J can be
expressed in the following flux conservative form:

0 —(Jfw) (4.15)

2T+

8
i 5 tu +v +w 8t’(Jf) (qu) ay

de _ af af af af 0

(8t’ ox' oy’ 82’)

Numerical models are generally based on the flux form of the evolution equations since they lead more easily

to conservative schemes. The advection terms are formally similar to their expression in Cartesian coordinates

where tracer f is replaced by Jf. The Jacobian takes into account that the real volume of a model grid cell varies
in space and time.

The appearance of the Jacobian J to express the material derivative in conservative form is not surprising,
since it is also necessary to perform integration in a different coordinate system:

/ flxz,y,2)dedydz = [ f(2/,y,2") J da’ dy’ d2’ (4.16)
Q o

The equations governing the evolution of a tracers includes beside advection also the diffusion. The vertical
diffusion in the transformed space would give:

oy _ 10 (v
dz ( 82) - Jo (J 8,2’) (417)

The horizontal velocity components, the advection and diffusion terms are similar to those of tracer. The
Corilois and buoyancy terms do not contain a spatial derivative. Thus they are not changed by the coordinate
transformation. The remain term to complete the momentum equation is in the pressure gradient. The z-
component of the pressure gradient becomes:

@ 8p 8p 0z

or 0 ' 07 Or (4.18)



The pressure gradient is thus the sum of two components. If the pressure is only a function of z (as it is
approximatiely the case in the ocean), the horizontal pressure gradient is zero and both terms should cancel out
each other. This is in general not the case for the descretized pressure gradient. The residual pressure gradient
drives a spurious current. This is the so called pressure gradient problem (e.g Haney, 1991; Deleersnijder and
Beckers, 1992).



-500

—-1000

-200
-400
-600
-800

Density

x 10"
Pressure gradient along sigma

x 10

1045
1040
1035
1030

200

-200

-200
-400
-600
-800

-200
-400
-600
-800

Pressure gradient

x 10"
Pressure gradient due to tilting

-4 =2 0 2 4
X 104

Figure 4.2: “Naive” pressure gradient discretization for the sea mount problem
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McWilliams (2003). Animation of the sea mount simulation.



The vertical variation of pressure are known because of the hydrostatic equilibirum:

dp 1 0p

The pressure gradient in transformed coordinate can thus be written as:

Op Op 07

S - 4.20
Ox ox’ P97 Ox (420)
dp 0z
= = — 4.21
50 P95y (4.21)
since
0z’ 0z 0z
— = -0 4.22
Ox 0z Oz’ ( )
1 0z
= ——— 4.2
J ox' (4.23)
The pressure gradient (equation 4.21) can further be transformed into:
dp dp 09z ap dp
a _ P 2P g2 4.24
ox ox' e ox' +9z oz~ 7 ox ( )
oP dp

where P = p 4 pgz is the Montgomery potential.

The pressure gradient can be interpreted as the gradient of the pressure obtained by vertical interpolated of the
pressure of the neighboring cells (figure 4.1.1). However, if the slope of the grid-lines increases, the interpolated



can become an extrapolation. The depth at which the vertical pressure gradient is evaluated is in this case no
longer consistent with the depth of the horizontal pressure gradient. This problem is called hydrostatic consistency.

o,

02| _ac
8Z/ —_

-z Ax

(4.26)

To reduce the pressure gradient problem, it is thus not sufficient to increase the vertical resolution alone.
Hydrostatic consistency requires that vertical and horizontal resolution are refined.
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Figure 4.4: Horizontal pressure gradient and hydrostatic consistency




4.1.2.

z-coordinate

For model using the z-coordinate, the depth of each model levels depends only on z.
Advantages:

» simple numerical discretization and visualization and interpretation of model results

» surface mixed layer can be naturally represented and resolved pressure gradient
Disadvantages:

» ignore small bottom slope. This leads to problem in representing potential vorticity variations
» unrealistic mixing for bottom flow (bottom boundary layer)

» later mixing and advection along constant-density surfaces is cumbersome and need a high number of vertical
levels to adequately resolve those processes. These model have in general a unrealistic large cross-isopycnal
mixing.

Improvements of the z-coordinate to include a better representation of the bottom topography (Adcroft et al.,
1997):

» Partial cell approach. The lowest grid cell can have a thickness that is a function of latitude and longitude.
The depth of a water column is no longer restricted to finite set of representable water depth.

» Shaved cells: The bottom grid cell is no longer a cuboid. The depth of all bottom vertexes are allowed to
follow the bottom topography. Shaved cells are thus more realistic than partial cells, however they shaved
are numerically less efficient that partial cells.



Figure 4.5: Different representation of the ocean floor in z-coordinate ocean models: the traditional full-cell
approach (top), partial cells (middle) and shaved cells (bottom). This figure is based on figure 3 from (Griffies
et al., 2000).



4.1.3. o-coordinate

The o-coordinate is defined by:

=1
o= 4.27
H+n ( )
for surface z =1 — o0=0
for bottom z2=-H — o=-1
Advantages:

» Realistic representation of the ocean bottom
» Well suited for shallow water

> all vertical levels are actually used (z-coordinate level run into the bottom floor and the depth of isopycnal
become zero is a density level is not present).

Disadvantages:

» The resolution of the surface mixed layer varies according to the water depth. To resolve the mixing layer in
deep, a very fine discretization of ¢ is necessary. To distribute the surface layer more uniformly, a so-called
s-coordinate is introduced (Song and Haidvogel, 1994; Shchepetkin and McWilliams, 2005) which is defined
using the o-coordinate by:

2(2,y,0) = ohuin + C(0) (h(2,y) — hmin) (4.28)
where H(z,y) is the depth C(0), a function that defines the vertical grid spacing.

» It is difficult to align advection and diffusion along inclined density surfaces in the ocean interior
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Figure 4.7: Since the o-levels depend on elevation, the depth vary in time. Animation of a surface gravity wave
and the movement of the coordinate system.
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» pressure gradient error: The pressure gradient error is a problem near steep topography, in particular at the
shelf break. Smoothing of the bathymetry is often required. The problem can be address with the double-
sigma coordinate Beckers (1991): the domain is divided in a upper and lower region at the approximate
mean depth of the shelf-break and a sigma coordinate transformation is realized in both regions.

» Advection and diffusion along constant density surfaces is difficult.
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coordinate goes from 170 m down to the ocean floor.



4.1.4. lIsopycnals

This coordinate is a close analog to the atmosphere’s entropy or potential temperature. The levels are choosen
such that the density of each level is a constant.
Advantage:

» in the ocean interior, tracers have the tendency to move along isopycnal surface. The isopycnal coordinate
is thus well suite for this transport.

» these models follow the bottom topography

» overflow can be represented more realistically than in z-models

» horizontal pressure gradient can be easily represented using the Montgomery potential (4.25).
Disadvantages:

» In unstratified conditions, such as surface and bottom boundary and during deep water formation, density
is inappropriate to provide sufficient vertical resolution.

» The range of densities can vary from sub-basin to another. It might be necessary to add density layer for a
small sub-basin which are not used at other places.

Exercise 7:

Compute and plot z, o and isopycnal levels of a meridional section at 24 deg W in the Atlantic. Try
to choose an appropriate resolution which resolves sufficiently the mixed layer. You may use the annual
temperature and salinity mean of World Ocean Atlas 2005 to compute the density (available here).


http://modb.oce.ulg.ac.be/mediawiki/index.php/Structure_and_application_of_numerical_ocean_models

4.2.

4.2.1.
4.2.1.1.

4.2.1.2.

Horizontal grid

Structured mesh
Cartesian mesh

If only a limited portion of the earth is considered, then the curvature of the earth can be neglected. The
differential operator have the simplest possible form in Cartesian coordinates.

Exercise 8:

Create a model grid and the model bathymetry of the western part of the Mediterranean at 1/4 degree
based on the ETOPOS5 bathymetry. Choose an appropriate position of the open boundary.

Spherical mesh

For a spherical mesh, the domain is discretized along longitude and latitude lines. The longitude increments are
normally chosen constant. The latitude increments sometimes also chosen to be constant. In this case, the grid
cells corresponds to squares at the equator and become more and more elongated rectangles ones approaches the
poles. To obtaine grid cells which corresponds locally to squares everywhere, the latitude increment A\ is equal
to:

AN = A¢cos()N) (4.29)

where A is the latitude and A¢ is the longitude increment. Due to the similarity to the Mercator projection,
this grid is also called a Mercator grid. In any case, the convergence of the meridians at the poles require a very
small time step. This problem can be circumverted by rotating pole to land.
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4.2.1.3. Generalized orthogonal mesh

The curvilinear grid is defined as a change of coordinate system:

£ = &(2,y) (4.30)
n = ny) (4.31)

This change of coordinate system is assumed to be invertible:

r = x(&n) (4.32)
= y(&n) (4.33)

Essential quantities to describe the local characteristics of the curvilinear grids are the scale factors m and n.

(ds)e %dg (4.34)

(ds)n

1
—d 4.
- n (4.35)

where ds is the distance between two points at constant £ or at constant 1. If (z,y) are the Cartesian
coordinates on a plane, the scale factors m and n are:

R

5o (3
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Figure 4.12: Example of a curvilinear mesh of the West Florida Shelf. Only one grid line of 4 is shown.



The derivative in the transformed coordinate system are related to the original derivative by:

0 or 0 Oy 0
= = 42 4,
BTz 9€ 0z T 0€ Dy (4.38)
0 or 0 Oy 0
= = =z 422 4.39
on on Ox + on Oy ( )
Vectors are locally rotated according to:
ox oy
or y
Those vectors are assumed to be orthogonal:
Ox dr Oy 0y
e, =0= ——— 4 22 4.42
€¢ €y 8€ 877 ag 877 ( )
Jacobian of the change of coordinate system can be written as:
Ox,y) _Ozdy Oxdy 1 (4.43)

T O(m,€)  ondE dEam  mn

indeed after some calculations one obtains,



oz dy> Ox 0x Oy Oy ~ Oz Oy
2 - XIS HIrITIYoy | 9Ty 4.44
7 on 06 “onoconoc T o¢ on (444)

ox%0y?  ox%0x® Oy*oy? ox*oy?

=y oc Ton e Tonoc Toc o (449)
ozx®  oy? oz?  ay?

- (5 +5 ) (% +%) (449)
1

= = (4.47)

The velocity in the curvilinear coordinate system (u,v) is obtained from the velocity in the Cartesian system
by:

0 0
u = a—va + (%vy (4.48)
v o= Z—sz + g—zvy (4.49)

To express the dynamical equations using the variables for the curvilinear system, one need to substitute the
variables of the old coordinate system by the transformed one. For the derivative, one obtains,

0 _ ppuo_ w0
5 = mna?7 o€ mnag an (4.50)
0 Jx 0 oxr 0

and the velocity



4.2.2.

oy 8y

Uy = mna—nu —mn_-= 85 (4.52)
Ox Oz
vy = —mna—nu + mna—gv (4.53)

For example the advection of a tracer is written as:

0 0 B 5,0y 3y dy 0 B oy 0

UI@xTJrvy@yT = m?n (077 % )(—877—af —af—anT) (4.54)

ox Ox Oz 0 ox 0

2,2 _or o ogr o
+m*n’(— 3 u+8§ v)( 8776§T+6§8nT) (4.55)

0 0
2

= muanT+n Uaf (4.56)

Because the transformed coordinate system is locally orthogonal, the differential operator can be written in a
compact form similar to the Cartesian system. The essential difference if the appearance of the factor m and n.
For example the Laplacian can be written as:

i . (M 9 (no
Vio = mnge ( ¢ )+mnan ( 8n¢> (457)
Grid staggering

By placing variables at different location, the accuracy of the discretization scheme can be improved (Arakawa,
1966; Arakawa and Lamb, 1981).

If variables are necessary on other location, spatial average (which amount to interpolation) is necessary. Since
spatial averaging smoothes the solution, it introduces numerical diffusion. Some scheme with spatial have also



numerical modes with a structure of a check-board. In the averaged field, the high frequency structure disappears
and there is thus no dynamical feedback to dissipate the check-board pattern. For example, the 1 dimensional
shallow water equations on a unstaggered grid:

n+1
n —-n Uj41 — Uj—1
B 7 v (4.58)
un+1 —u _ _gn?jll - ninjll (4 59)
At 2Azx '

The rhs are finite differences over 2Ax. These terms can also be viewed as differences over Az of averaged
values. These admit the following as a stationary solution:

n = Ae™ (4.60)
u = DBe™ (4.61)

The sign of the elevation and velocity changes every grid point. In general a numerical scheme and a grid is
sought which minimizes the need of spatial averaging.
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Figure 4.13: Staggering of variables in 1 dimensions

Exercise 9:

Discretize the 1D linear shallow water equations on a staggered grid with a wall at x = 0 and x = L.
Determine and stability criterion and solve the discretized equations numerically.

Oh Ohu

% - ow (462)
ou oh

where h is 30 m. The domain is 100 km (L) long and discretized with 100 grid points. The average depth
(h) is 30 m and the initial h given by:

h(x) = h + aexp(—(x/b)?) (4.64)

where a =2 m and b =5 km. The fluid is initially at rest.



Arakawa (1966) introduced several ways to place the variables of the primitive equations on a two dimensional
grids (figure 4.2.2. The variables u and v corresponds to the horizontal velocity and tracer flux components. T
are the tracers (temperature, salinity, turbulent kinetic energy, concentration of biological and chemical tracers)
and sea surface height. variable ¢ represent the location of barotropic stream function.

Most common grids are B and C. Numerous authors have compared the merit of the different grid under
different conditions:

» in B grid, the Coriolis force can be easily represented while the C grid requires spatial averaging for this
term. Geostrophy is thus well represented on a B grid.

» at coarse resolution inertia-gravity waves are better represented on a B than a C grid, at fine resolution the
C grid is better than the B grid (Arakawa and Lamb, 1977; Hsieh et al., 1983; Beckers and Deleersnijder,
1993).

> B grid is better for Rossby-waves (resolved and under-resolved) because of their superior representation of
the Coriolis force (Dukowicz, 1995).

» C grid has a better representation of the Energy cascade with baroclinic eddies (Janji¢, 1984).

4.2.3. Unstructured mesh

Most ocean models use currently structured grids. However, recently numerical ocean model using unstructured
grids are developed. With unstructured meshes the smallest resolved scale varies in general of the model domain.
Advantages:

» very flexible to represent complex coastline and other isobaths
» increased resolution in zones of interest

» finite volume or finite elements
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Figure 4.14: Location of variables in staggered Arakawa A, B, C, D and E grid.
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Figure 4.15: Example of an unstructured mesh. Image from Applied Mechanics Division at UCL.

Disadvantages:
» Difficulty to represent the geostrophic balance correctly

» Unphysical wave scattering when the resolution changes abruptly



Exercise 10:

Consider the linear shallow water equation in a 1d-domain bounded by two coastal walls.

ac U
ot oz (4.65)
ou ¢
- e (4.66)

Between 0 and L the domain is discretized with a resolution Ax = 1 km and between L1 and L2 with a
coarser resolution of rAx. The initial surface elevation is given by:

C(x) = Aexp (fo/Lz) (4.67)

where h = 500 m, Ly = 200 km, Ly = 400 km, At = 10 s and A = 1 m. The velocity is initially
zero. Integrate the equation forward until the (main) perturbation reached x = 300 km. At this moment
integrate the wave energy over the first half of the domain:

Ly U2
E= / g¢* + - de (4.68)
0

» Carry out the experiment for different value for r = 2, 3 and 5 and L = 4 km, 10 km and 20 km.
» Describe what happen at x = L1 and why.

» Explain the dependence of E on r and L.



4.3. Time stepping

Time stepping is the temporal equivalent of the spatial coordinates and grid staggering. The primitive equations
admit a range of wave-like solution with a broad spectrum of possible propagation speed. For example surface
gravity waves have a propagation speed of /gH (about 100 m/s for 1000 m deep ocean) and Rossby waves
(c = —B/k?) These waves are produced in barotropic, baroclinic, and thermodynamic adjustment processes and
the time-scale of these processes is related to the corresponding wave propagation speed. Each of those wave
like solution introduce a stability criterion which is increasingly severe for faster waves. To reduce computational
cost, a different time steps for various equations is often used (Bryan, 1969b,a). The barotropic variables (surface
elevation and depth averaged current), the baroclinic velocity and the tracer can thus be integrated with different
time steps.



Exercise 11:

Discretize the linear two-layer model on a staggered grid with a wall at = 0 and x = L.

8hk 6Fkuk
_— = —— 4.69
ot ox ( )
8uk 1 (9pk
= = =R 4.70
ot P Ox ( )
for k =1 and k = 2 and where the pressure for each level is given by:
p1 = p1g(ha +he — H) (4.71)
p2 = pilghi +(g+g')(ha — H)) (4.72)
where H = h; + hy and ¢’ = ”Qp%plg. Initially the velocity is zero and hy and ho are given by:
hi = Ajexp(—z%/L'?) +hy (4.73)
hy = Asexp(—z®/L"?)+ hy (4.74)

where Ay =40 m, A2 = =30 m, L =100 km, L' =20 km, p; = 1020 kgm=3, po = 1035 kgm~3, and
h1 = h2 =50 m.
Hint: Use the pressure at time step n + 1 to compute the velocity at this time step.

» Draw hy as a function of time and space and describe it
» Determine graphically the propagation speeds and compare it to the theoretical values

» Repeat the simulation with p; = 1000 kgm=3, and p; = 1035 kgm~3 and explain the changes
relative to the first simulation in physical terms.



The dynamics of a stratified fluid can be decomposed vertically in orthogonal eigenmodes (Gill, 1982). The
gravest mode is called the barotropic mode and all higher modes are called baroclinic modes. In practice the
barotropic mode is obtained by depth averaging.

The barotropic mode contains the fast moving surface gravity waves and the slow moving planetary and
topographic Rossby waves (or the geostrophic equilibrium for a flow ocean with constant f). The fast moving
surface gravity waves can handled in different ways:

» Explicit free surface models: Barotropic shallow water equations are solved with a small time step (according
to the CFL condition for the surface gravity waves)

» The surface gravity waves are removed by the altogether with the rigid lid approximation. However, this
means that:

e need to solve an elliptic problem for the stream function ¢ or surface pressure. Direct solution of the
elliptic problem is only feasible for smaller problem.s For an iterative elliptic solver, it is difficult to
achieve convergence in a reasonable number of iteration.

e Not possible to add/remove water (due to river or precipitation/evaporation). Freshwater flux is
treated as a virtual salinity flux.

e rigid lit approximation modifies also the dispersion relation of Rossby waves

e no tides
The rigid lid method is becoming obsolete even for ocean climate modeling (Griffies et al., 2000).

» Implicit free surface models: implicit methods admit large time-step, but not resolving the barotropic
dynamics. Still need to solve an elliptic problem.

Only local boundary conditions are needed for explicit free surface models while implicit and rigid lid approaches
require non-local boundary conditions. The free surface is more easier to implement for o and isopycnal models
than for z-models, since the model cells in a z-grid might be partially empty. Also free surface models are more
efficient on a parallel computer.
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Figure 4.16: Snapshot of the simulation
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Figure 4.17: Hovmoller Diagram of hs showing the propagation of the external and internal waves



Chapter 5

Solving model equations on a grid
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The purpose of this chapter is to review main methods to discretize a partial differential equations to resolve
it numerically. The methods are illustrated with the 1D advection equations:

ou ou



5.1.

All discretization method take only into account a certain range of scales. Larger scale should be taken into
account as boundary conditions and smaller scales have to be parameterized.

Finite difference

The continuous function is function u is sampled at discrete locations (z;,t,) = (Azj, Atn) where j and n are
integers. The derivative of the partial differential equations are approximated by finite differences:

T_H-l_u

] J
At YT oA

The dipsersion relation of this numerical scheme is determined by assuming a wave-like solution:

n n o _ .mn
U ; (R

=0 (5.2)

ul = Aexp(i(kAxj — wAtn)) (5.3)
which leads to:
exp(—iwAt) + i% sin(kAz) =0 (5.4)
x
The dispersion relation is thus,
-1 . i 2 .. 92
w=tan~ (Csin(kAzx)) + B In (1 + C?sin*(kA)) (5.5)

where C' = %‘;. The angular frequency has an imaginary part which is always larger than 1. The scheme is

thus unconditionally unstable. In general, there is no guarantee that a partial differential equation solved by the
finite difference approach is stable. The only way to find out is by applying a stability analysis.



In equations (5.2), the spatial derivative was treated differently that the temporal derivative. The leap-frog
scheme discretizes both derivative in a symmetric way.

n+l n—1 n )
U, U uj_l U’j—l

J J
N

It can be shown that this scheme is conditionally stable if C' < 1. However, this scheme suffers from other
issues:

=0 (5.6)

» it requires two initial condition at two successive time steps
» it requires an unphysical downstream boundary condition

» it admits a spurious numerical mode as solution



Exercise 12:

An additional relaxation term if often included in numerical models to avoid unrealistic drifts due to e.g.
systematic error in the heat flux. This term “nudges” the model towards a reference state such as a
climatology or observations. Study the evolution equations of temperature where only this relaxation is
term present:

L (g (5.7)

where T = 1 month and T'(0) = 10°C.

» For T° = 20°C. Solve this equations analytically and numercially using an Euler-forward scheme.
Integrate this equations for 3 years with a suitably chosen time step.

» ForT® = A+ Bcos(wt) where A = 20°C, B = 5°C and the period of the cosine is one year. Solve
this equation numerically and discuss the phase difference between T' and T°.

» Can you think of others processes (possibly in other fields) which are similar to the nudging terms?

Exercise 13:

Using the sea-surface height in NetCDF file ssh_20071127.nc compute the corresponding surface
geostrophic current by finite difference.



5.2. Finite volume

The partial differential equation is written in flux form:

ou 0q
s + 7 0 (5.8)
qg = cu (5.9)

The partial differential equations are integrated over a finite volume:

(J+1/2)Ax
/ gu L 044, g (5.10)
G-1/2a: Ot Oz
ou;
Axa—tj—i—qjﬂ/g—qj_l/g =0 (511)

where u; represents the average over the grid cell and g4/ is the flux at the interface:

1 (j+1/2)Az
u; = — udx 5.12
! Az /(j—1/2)A;c ( )
g2 = q((j+1/2)Ax) (5.13)
For the upwind-scheme, the flux is given by:
Qjy1/2 = cCuj ifc>0 (5.14)

cuj_1 ifc<O0 (5.15)



The time derivative can be discetized by using an Euler forward step:

At
U?H =uj + E(Qj+1/2 —qj—1/2) (5.16)

This numerical scheme could also be obtained by the finite difference approach. For simple partial differential
equations, it is common that the finite difference approach and the finite volume approach yield the same numer-
ical scheme, but for more complex partial differential equations this is in general not the case.

This method does not required that the finite volumes are rectangular. Indeed, some numerical ocean models
apply the finite volume approach to unstructured triangular meshes.

5.3. Finite elements

The solution is projected into a series of (non-orthogonal) functions which are only non-zero over a given element

N
ut =" ui(t)gi(x) (5.17)
i=0
The basis function ¢; are defined by:
1
o = E(x—(i—l)h) (i—1Dh<z<ih (5.18)
1
= E((i—i—l)h—x) ih<x<(i+1)h (5.19)
=0 otherwise (5.20)

wherei=1,...,N.
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Figure 5.1: The shape of function ¢; fori=1and h =1

In general, there are no coefficients u;(t) such that the function u* satisfies equations (5.1) exactly. There
will be a residual, noted r.

ou* ou*
5 +08x =r (5.21)

However, we want that the residual should be “as small as possible”. The coefficients w;(t) are determined




such that the residual is orthogonal to a set of test functions:

/rwid:c:O fori=1,...,N (5.22)

For the Galerkin method, the basis function themselves are chosen as test functions: ¢; = w;. For the
1d-advection case, it follows that:

d
“J/¢Z¢]dx+uj/¢7 Wige = 0 (5.23)
After evaluating the integrals, one obtains:
1 du,-_l 2 duz 1 dqu_;'_l C
2 t = - . 5.24
6 dt 3dt "6 a oz v vl (5:24)

Semi-discrete equation since the time derivative is not jet discretized. This equation is implicit. For the finite
element method in general a large but sparse system must be solved.

For the present 1d-advection case, a tri-diagonal system for which efficient solver exists such as the Thomas
algorithm.

= Aexp(i(jkh — wt)) (5.25)
Dispersion relation:

_ 3 sin(kh)

~ 2+cos(hk) A

is a approximation of the true dispersion relation to the fourth order in h.

(5.26)



5.4. Spectral methods

As previously, the solution is projected into a series of function.

N
ut =Y ui(t)g;(x) (5.27)
j=0

But now, the basis function are chosen orthogonal. The choice of the orthogonal function is often determined
by the geometry of domain. For the 1d-advection problem, we choose Fourier modes:

¢; = exp(ik;z) (5.28)

By substitution, u* in the 1d-advection equation, one obtains:

ou  Ou
i — = 2
% Can (5.29)
N du;
> 57 0 +ickju;é; =0 (5.30)
Jj=0
Since the basis function ¢; are orthogonal,
du; .
8—; +ickju; =0 (5.31)

Spectral method has thus transformed the partial differential equations (5.1) into a set of trivial and decoupled
ordinary differential equations. The dispersion relation for the semi-discrete equation obtained by the spectral
method is thus identical to the dispersion relation of the continuous equations.



The spectral method is often used for global atmospheric circulation model where sperical harmonics are used
as basis functions. However, it is difficult to apply the spectral method to the ocean because of the complex
geometry of the domain.



Chapter 6

Sub-grid scale processes

Contents

6.1 Surface mixed layer

6.2 Bottom boundary layer

6.3 Horizontal sub-grid scale process

6.1. Surface mixed layer

Bulk mixed layer, assumes a perfectly mixed layer. All variables are perfectly uniform over this layer. No vertical

structure is a problem where this layer extends to over hundred meters (e.g. subpolar regions).
Continuously formulated surface mixed layer:



6.2.

6.3.

» K-Profile Parameterization (KPP) (Large et al., 1994): diffusibility is based on the Richardson number,
includes non-local mixing processes

» Mellor-Yamada (Mellor and Yamada, 1982)
» k-c. Additional equations for turbulent kinetic energy and turbulence dissipation or length-scale

z and s -coordinate allow a good representation of the surface mixed layer. For hystrotatic models, the
turbulence scheme must handle also if hydrostaticaly unstable, then large diffusibility to parameterize convection
(since hydrostatic approximation)

Bottom boundary layer

o coordinate allow a good representation of the bottom boundary layer since the flow is constrained by the bottom
topography.
Width of several tens of meters depending on the roughness for the sea floor and the strength of the currents
Overflow are currents following the bottom topography. Their water is in general much denser than the
surrounding waters. Overflows are problematic in z-coordinates since topography is approximated by steps.

Horizontal sub-grid scale process

While several parametrization exists for the vertical sub-grid scale processes, only a few and simple parametrizations
are used for the horizontal sub-grid scale processes. The simplest form is the horizontal diffusion:

D(c) = a% (Agi) + a% (Ag;) (6.1)

where A is either constant or depends on the characteristics of the flow (e.g Smagorinsky, 1963). Most
numerical ocean model require a horizontal diffusion to dissipate energy at small grid scale.
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Programming aspects
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7.1. Programming languages
There are two general approaches to implement programming languages:

» Interpretation: An interpreter takes the program in some language, and performs the actions written in that
language on some machine.

» Compilation: A compiler translates the a program into some other language, which is in general machine
code that a computer can execute directly.

Fortran, C and C++ are examples of languages which are compiled to machine code. Interpreted languages
are for example Octave/Matlab, Python and Shell scripts. Compiled languages require the declaration of types of
a variables. It is thus easier to develop programs written in Interpreted languages. However, programs written in
compiled languages are generally faster than programs in interpreted languages. Most ocean models are written in
Fortran. But interpreted languages are often used for preparing the models fields and post-processing the results.



7.2. Elements of a programming language

7.2.1. Elementary types

Fortran Matlab/Octave

boolean (true or false) logical logical

integer (whole number) integer(1), integer(2), integer(4), | int8, intl6, int32, int64
integer(8)

unsigned integer (positive whole | not available uint8, uintl6, uint32, uint64

number)

real (real number) real(4), real(8) single, double

characters and string character(length) char

variable declaration real(4) :: variable not needed




7.2.2. Arrays and structures

Fortran

Matlab/Octave

arrays (collection of variables of
the same type accessed by an in-
dex)

real (4) array(10,20)

array = zeros(10,20)

structure (collection of variables of

the different type accessed by their | | definition of type % definiton
name) type type_name s.fieldname = value;
I fields, e.g.:
real (4) fieldname % access
end type [type_name] s.fieldname
I declaration of
I variable
type(type_name) :: s
I access
s%fieldname
cell arrays (collection of variables | not available
of the different types accessed by array {1} = valuel;
an index) array {2} = value2;




7.2.3.

Statements and commands

Fortran

Matlab/Octave

conditions

if (condition) then

if condition

I do this if condition % do this if condition
I is true % is true
else else
I otherwise this % otherwise this
end if end
loops using an iterator
do i=imin ,imax, step for i=imin:step:imax
I do something % do something
end do end

loops with stop conditions

while (condition) do
I do something while

while condition
% do something while

I condition is true % condition is true
end do end

terminate loop prematurely
exit break




7.2.4. Subroutines and functions

Fortran

Matlab/Octave

main program

program main
I do some thing
end program main

Commands can be regrouped in a
file (script). The script can be
called using the file name (with-
out the extension “.m")

subroutine (block of code)

subroutine sub(paraml,
param2)

I do some thing

end subroutine sub

I call a subroutine
call fun(pl,p2)

see functions




function (block of code with re-
turn value)

A function can have only a single
return value

real function fun(param)
I do some thing

fun =
end function fun

I call a function
r = fun(p)

A function can have multiple re-
turn values and it must be saved
in a file with the same name (plus
extension “.m")

function [r] = fun(p)
% do some thing
r —=

end
% call a function
r = fun(p)

parameters of function and sub-
routines

Type of parameters have to be
declared after the subroutine or
function statement. Parameters
are passed by reference (i.e. mod-
ifications will also affect the corre-
sponding parameter from the call-
ing level).

real function fun(param)
integer param

I do some thing

end function fun

Type of parameters are not de-
clared. Parameters are passed by
value (i.e. modifications will not
affect the corresponding parame-
ter from the calling level).




Exercise 14:

Programming exercise:

» 1D-diffusion equation (fori=1,...,N)

n n , At

¢ =+ o (Fin — F) (7.1)
R n n

Fo= (e~ ) (7.2)

with closed and periodic boundary conditions. Initially all values of ¢ are zero except one (at the
center or near the boundary).

» 2D-diffusion equation. Generalize previous equations to 2D and implement it.






7.3. General structure of an ocean model

Initialization of variables and grid

[

Read or compute forcing fields (surface fluxes,
open boundary conditions, ...)

H

Solve dynamical equations for next time step

Apply boundary conditions

H

Save the model output every ntime steps

Figure 7.1: Different parts of a numerical ocean model
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Model Observations

Data Assimilation

Analysis

Figure 8.1: Schematic view of data assimilation



8.1. Nudging

>

>

>

Nudging is one of the simplest assimilation methods.
Observation must be on the same grid than the model.

An source term proportional to the misfit between observation and model to the dynamical equation:

oT

— = T°-T 8.1
=T (10 T) (8.1)
where 7 is the relaxation time scale.

The relaxation time scale may vary in space.

Information is propagated through the model physics.

The relationship between model variables is not explicitly taken into account.

8.2. Optimal interpolation

To derive the optimal interpolation method (Gandin, 1965), it is convenient to introduce the following concepts:

The state vector x is a column vector containing all unknowns that we want to estimate from the observations.

In general, the state vector contains the value of all prognostic parameters at the discrete locations of the
model grid.

The observation vector y° contains all observations.

The observation operator H : When this matrix H is applied (or multiplied to the left) to a state vector x, it

returns the field interpolated at the location of the observations Hx (see figure 8.2).
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Figure 8.2: The operator H(-) interpolates gridded field to the locations of the observations. This figure shows
schematically the position of measurements (crosses) and the gridded field (dots). In its simplest form, H(:)
performs a bilinear interpolation.

The vector x! is the true field and we want to obtain an analysis x® which is as close as possible to the true

state given the model forecast x/ and the observations y°. However, the model forecast and the observations
may have errors:

xt = x'+n° (8.2)
y’ = Hx'+e (8.3)

where n° represents the error of the model forecast and e the error of the observations.



8.2.1. Error covariances

Error covariances describe how different variables or the same variable at different locations are related in average.
The covariance between the random variable x and y is defined as:

cov(z,y) = E(x — Efz]) (y — E[y])] (8.4)

In practice, the expected value E [-] can be estimated by averaging over repeated realizations of the random
variables z; and y; for : =1,..., N. The covariance of a variable with itself is the variance.

var(z) = cov(z,z) = FE [(:c -F [m])z] (8.5)

From the covariance one can compute the correlation,

cov(,y)

corr(z,y) = (8.6)

var(x) var(y)

The correlation is always bounded between -1 and 1. For vectors, the concept of covariance is extended to
a covariance matrix. The elements i, j of the covariance matrix of the vector x are the covariance between the
elements z; and ;.

P=F|x-EX)(x-EX)] (8.7)

The covariance matrix is per construction symmetric and positive definite (its eigenvalues are positive). The
diagonal elements of the covariance matrix are the variance of each element. The covariance matrix can also be
decomposed in variance and correlation,

P = DCD (8.8)

where D is a diagonal matrix. Its diagonal elements are the variance of the vector x. The matrix C is the
correlation matrix. All elements of the correlation matrix are contained between -1 and 1. The diagonal elements



of C are 1 since they represent the correlation of a variable with itself.



8.2.2. Assumptions

In order to proceed we must make some hypotheses concerning those errors.

» observations and the model forecast are unbiased, i.e. that the error is zero in average:

En’] = 0 (8.9)
Ele] = 0 (8.10)

» Error covariance matrices are known. Those matrices are related to the expected magnitude of the error.

Entnt’] = PV 8.11)
Eee’] = R (8.12)

» error of the first guess is independent of the observation errors
Em’e™] = 0 (8.13)

8.2.3. Analysis

The optimal interpolation (Ol) scheme can be derived as the Best Linear Unbiased Estimator (BLUE) of the true
state x* which has the following properties:

» The estimator is linear in x/ and y°

» The estimator is not biased:
Ex =x' (8.14)



» This estimate has a minimal total variance i.e. no other estimator would have an error variance lower
that the BLUE estimator.

The only unbiased linear combination between x/ and y© is the following:

x*=x/ + K (y° - fo) (8.15)

where the matrix K is the called the “Kalman gain”. This matrix represents the griding operation or “analysis”
since it returns a gridded field when it is applied to a vector of observations minus the first guess. By subtracting
the true state x! from this equation, one can derive how an error on the first guess or on the observations affects
the analysis:

n*=n"+K(e—-Hn") = I-KH)n’+Ke (8.16)

The error covariance of the analysis which we want to minimize if given by:

PY(K) = E[n"n""] (8.17)
= I-KHP'(I-KH)" +KRK" (8.18)

The error covariance of the analysis depends on the Kalman gain K. The total error variance of the analysis
is the trace of matrix P?.

tr (WP (K)) = tr (WP?) + tr (WK HP’"H"K") — 2tr (WP’H"K") + tr (WKRK") (8.19)
The matrix W is introduced to take into account that the model variables may have different units and may

represent grid cells of different size. If the total variance is at its minimum, then a small increment of the gain
0K does not modify the value of the total variance in the first order of JK.



tr (WP* (K + 6K)) — tr (WP (K)) = 0 (8.20)
= 2tr (WK HP'H" 6K") — 2tr (WP’H"0K") + 2tr (WKRSK")
= 2tr (W [K (HP'H” + R) — P'"H”| 6K")

Since the perturbation of the Kalman gain 0K is arbitrary, the expression in brackets must be zero. The
optimal gain, or the Kalman gain, is thus:

K = P'H” (HP'H” +R) ' (8.21)

The error covariance of the BLUE estimator is thus:

P* = P’-KHP’ (8.22)
— P'—P'H” (HP'H” +R)  HP’ (8.23)

In practice, often only the error variance of the analysis (i.e. the diagonal elements of P%) is computed.



8.3. Kalman filter

» ocean models are generally nonlinear, but in some cases the dynamics of the ocean can be approximated by

a linearized model

» growing and decaying error modes can be determined for the linear models.

8.3.1. Linear models

The true model dynamics can be written in the linear context as:

xh x4+ ¢ (8.24)
Xiy = Mx{+fi+mn, 8.25)

The vector f; represent all terms of the linear model independent of the system state. For linear ocean models,
this vector represents the external forcings such as the winds. The model forecast error is defined by the difference

between the true state x! and the predicted state x;.
¢, =x—x; (8.26)

This error of the model state is governed by the following stochastic equation:

Co ¢’ (8.27)
Civ1 = Mg +m; (8.28)

For a linear model, the evolution of each statistical moment of ¢, is independent of each other. We also
assume that the initial condition and the model are unbiased and their error covariance are written as P* and Q;

respectively.



E¢) =0 P = E(i¢T)
E(n) =0 Q = E(nmn")

By taking the expectation of equation (8.25) one can show that the mean of the random vector x;; is the
central forecast:

Xo x' (8.29
Xi+1 = MiXi (830)
and the error covariance P; is given by:
P, = P! (8.31)
P, = MPM? +Q; (8.32)

This equation describes how the error variance and covariance are propagated through a linear model. It is
interesting to note that it does not make any assumption concerning the pdf of the errors {* and 7, except that
their mean is zero.

But if these errors are Gaussian distributed, then also the model state vector at any time will follow a Gaussian
distribution. This is due to the fact, that the linear stochastic model implies multiplications with a constant
matrix and sums of two random vectors. In fact, the product of a constant matrix and Gaussian random vector
and the sum of two Gaussian distributed variables can always be described by a Gaussian pdf.



8.3.2. Nonlinear models

If the system state is perfectly known at an initial time ¢y, a perfect model would allow us to forecast the state
of the system at any future state by performing a series of successive forecasts.

xg = X (8.33)
Xi+1 = Mi(xi) (834)
It is clear that in real world, neither the initial state vector nor the model are perfectly known. The number

and the quality of observations are also limited and therefore errors on the estimated initial state always remain.

The uncertainties of the model stem from two different sources: the boundary conditions and the discretised

model equation including the parameterisation of unresolved processes. The true state x! is therefore governed

by the following system introducing two unknown error terms: ¢* and 7,
xt, = x4+ ¢! (8.35)
Xip1 = Mi(x;) +m (8.36)

The propagation of this error through a nonlinear model is obtained by subtracting the evolution of the true
state (8.36) from the central forecast (8.34).

Cir1 = Mi(xi+¢;) — Mi(xi) +m; (8.37)
If the error is supposed to be small, then the error propagation can be expanded by a Taylor series. The ath

component of the model state's error ¢, is obtained by:

¢ oM ¢ +82Mm
o T gag T Qupor,

CipCiy + O(¢%) + (8.38)



The Greek indexes denote the components of vectors of matrices. For clarity, the summation sign for repeated
indexes has been omitted. We neglect here the third order contribution in the error of the model state. As it was
shown before, the error {; can be expressed as a probability density function. From equation (8.38) the error can
also be quantified in terms of its statistical moments. The two first statistical moments are:

aMia aZMia
El¢i1,) = Tl‘/gE [Ciﬂ} + WE [CiBCiw} +E[0(¢%)] (8.39)
oM, OM; ,
E |:Ci+laci+15:| Dz ﬁxgﬂE {Ciycw} +FE [O(Cd)] + Qinp (8.40)

The first moment is the mean error or the bias and the second moment is related to the covariance by:

Pios = B [CiaCis| = BlCia) B[] (8.41)

Some important properties of linear models are no longer true if the model is nonlinear. First of all, even if

the initial condition and the model are unbiased, there is no guarantee that the nonlinear forecast will also be

unbiased. This effect can be shown with a simple example. The bottom stress 7 is often parameterized by a
quadratic function of the velocity wu:

T = au? (8.42)

We suppose that this parametrization is correct and that the velocity estimation is unbiased. A velocity error
€y lead to the following error in the bottom stress:

¢, =alu+¢,)? — 1 =2aul, +al? (8.43)

The mean error in the bottom stress is therefore positive:

E[¢]=aE[¢%] >0 (8.44)



Positive velocity errors have a larger impact on the bottom stress than negative errors. Both errors do not
compensate each other and therefore a positive bias remains.

This approach is very similar to the turbulence closure problem. The errors here correspond to the sub-grid
scale processes of the closure problem. Therefore, the model parametrization takes the bias due to unresolved
sub-grid scale features (here the bottom boundary layer), already into account. The errors resolved on the model
grid however, have also an effect on the expected mean flow.

The other characteristic of the probabilistic nonlinear models forecast is that the statistical moments are no
longer independent of each other (e.g. Evensen, 1994). The forecast of a statistical moment may depend on all
higher moments. It has been shown for instance, that the mean error depends on the covariance. In the extended
Kalman filter, all moments higher than the covariance are neglected. More sophisticated closure schemes for
the statistical moments exist (Fleming, 1971a,b; Leith, 1971; Leith and Kraichnan, 1972; Leith, 1974) but their
application to large ocean models is questionable since the estimation of the error covariance is already very
difficult and can only be done in an approximate way.

The coupling of the statistical moments has also the consequence that an initial Gaussian distributed error
may become distorted. The pdf of the forecast error can have a more complex distribution than a simple Gaussian
one. For example, the error can follow for a multimodal pdf. Such a phenomenon occurs for instance in the case
of flow instabilities leading to two (or more) likely but distinct ocean states.

For a weakly nonlinear ocean model, the second order derivative of the model is neglected in equations (8.39)
and (8.40). This is the approach chosen to derive the extended Kalman filter.

As in the linear case, the pdf of the model state's error can be approximated at any time by a Gaussian function
if the errors ¢ and 7, are Gaussian random vectors. Then, the pdf of the model state's error is determined only
by its mean and covariance. The mean of this pdf is the central forecast x; and the error covariance is obtained
by the tangent linear model M;:



X7;+1 = Mz (Xz) (845)
P, = MPM!+Q; (8.46)

The tangent linear model M, is computed at the state x;.

(8.47)

ML {6M1}

ox

The error forecast of the extended Kalman filter can be schematized as in figure 8.3. Covariances are always
positive defined matrices. The hyper-surface in the state space of all states with the same probability is thus an
ellipsoid for a Gaussian pdf. The shape of this ellipsoid depends on the covariance matrix. The principal axes,
for example, are the eigenvectors of the covariance matrix. Figure 8.3 shows the ellipsoids representing the error

covariances P; and P;; of the states x; and x;1. The vectors u; and uy are the eigenvectors of P; multiplied
by the square root of the corresponding eigenvalues.

P; = wu! 4+ upul (8.48)

The vectors u; and uy have therefore the magnitude of a typical error.

If the true system is not in the state x;, but in the state x; + uj, then at time ¢;,1, the true system will be
in the following state:

Mi(xi + u1) ~ Xit1 + M;u; (849)

provided that the model is perfect (Q; = 0). In the same way, the state x;+uy maps on the state x;1 +M;us
at time t;41.



Every point x = x; + ¢, on the ellipsoid centered at x; satisfies the following condition:

GP¢G =1 (8.50)

The error ¢, at time ¢; has grown or shrunken to ¢;,; = M;(; at time ¢; ;. The hyper-surface representing
the errors at ¢, can be obtained by substituting ¢; by Mi_lcjiJrl in equation (8.50):

N ~_ _

CiT+1 (Ml 1) P; 1M¢ 1Ci+1 = 1 (8.51)
-1

¢ MPM]) ¢l = 1 (8.52)

The ellipsoid of the error at time ¢;11 is therefore represented by the following covariance matrix:

Py =M;P,M] (8.53)

In fact, this is the forecast equation of the error covariance matrix (8.46) for a perfect model.

In summary, the linear theory for error forecast can also be applied to weakly nonlinear models. The mean of
the Gaussian pdf is predicted by the full nonlinear model and the error covariance by the tangent linear model.
The criterion “weakly nonlinear” means that the nonlinearities of the model for a typical error ¢ must be small.
For instance, the following approximation must be possible:

M;(x+e¢) ~ M;(x) + M;e (8.54)

This means that perturbations around the central forecast with the magnitude of a typical error can be forecast
by the tangent linear model. This requirement can fail either if model is too nonlinear or if the errors are too
large.
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Figure 8.3: Forecast of the error covariance with the tangent linear model



Appendix A

Transformation of coordinates

In order to solve a partial differential equations analytically, we are free to chose the coordinate system which
suites best the geometry of the problem. Also for numerical problems, such transformations are interesting since
it may help the discretizations of the model domains (for example a discretization which follows the bottom
topography) or it may reduce discretization error when the coordinate system is chosen such to follow variations

of a given property (for example density in isopycnal coordinates).

Change of the coordinates (z1, 22, . ..

T

L2

, %) to the new coordinate systems (x}, 5, ...

/ !
1’1(3)1,1’27...,

A !
xo(xy, xh,. ..,

/ !
Tp(T], 25, ..., X



/

This transformations is assumed to be invertible. The coordinates (x}, 25, ..., ] ) can also be expressed in

n
terms of (z1,22,...,2p):
¥y = 2i(w,m0,... 1) (A.4)
ZL‘/2 = I/Q(xlax27"'7zn) (A5
o, = al(w1,10,... 1) (A.6)
Any function f of the old coordinate (x1,x2,...,x,) can be transformed into the new coordinate systems by
substituting (1,22, ...,Zy):
f(x17$21 e 755'71) = f(wl(x/la ml2’ R 71‘%)7 cee 7$n(w/17x/27 SRR CE;)) (A'7)
ox; O
— flo (2, 2,2l (2), 2l al)) = L — (1, T, .. T) (A.8)
o " " Oz}, Ox;
or in matrix form
ol Oxq Oxo Ox, )
oz oz, 9z, " ozl o
o o} och o %"
oxl, _ Ozl Ozl ce oz, Oxo (A9)
0 o, 01 O, o

ox! oz’ ox! tee ox!, Oxn



The matrix in the previous equations is also written as:

Oxq Oxo o2
oz oz o oz
oxq dxo oy,
ox! ox!, e ox!,
M = 2 2 2 (A.10)
oxq Oxo Oxp
ox!, ox!, e ox!,
To transform a partial differential equations, we need to expressed derivatives in (1,2, ..., Z,) in derivatives
H / / /7 \.
in (zf,2h,...,20):
3 0
851 85/1
T 1 z/,
=M _ (A.11)
2 o
Oy oz’

The determinant of the matrix M is called the Jacobian J. At some locations, the Jacobian may be zero and
the inverse does not exists. For example, the Jacobian is zero at the origin of polar coordinate system.

If the transformations is given in the form of equations (A.4) - (A.6), the derivative in the new coordinate
system can be obtained directly by:

9 oz} Oxy 9z, 2
Bz ox ox to ox oz
881 gyi gmi ga«} aaj
2 — Zfb’z 9-32 T2 2 (A12)
0 81"1 BI/Z BI,/” 9

Oy Oy, Oy, ce Oy, oz,



An infinitesimal increment dz; is transformed according to the following rule:

o1
doj = aii da! (A.13)
This can be expressed in matrix form as:
day dz}
dzs duxf,
= M7 _ (A.14)
dz,, dz!,

Note that here the infinitesimal increments are transformed by the multiplication of the matrix M’ whereas
the derivative are transformed by M 1.

For vector fields, a new set of basis vector (ef,...,e}) need to be introduced. The vector €] is proportional

to the direction the variable z} and all other variables are constant.

)

hie; = 5, (©i%) (A.15)
6 .

- ﬁej (A.16)

The proportionality constant h; is determined by requiring that the norm of € is 1.

(A.17)




The components of a vector field v are obtained by projecting this vector on the basis vectors:

vje; = vie] (A.18)
vj = e}-eju; (A.19)
Oz v
= 2 A2
V1 ’Ull/hl
/
Y B (A21)
Uy, vl [l
A.1. Example
Polar coordinates:
x = rcos(f) (A.22)
y = rsin(6) (A.23)
9z 9y @) sin(9)
M = < o5 ) = ( oo ) (A.24)
2 5 —rsin(d) rcos(f)

Jacobian

J =rcos?(f) +rsin’(0) =r (A.25)



The inverse matrix

1 [ cos(d) —1Lsin(0)
M = < sin(9) % cos(0) > (A.26)
({% = COS(G)% - %sin(&)% (A.27)
0 . o 1 9
% = sm(Q)a + - cos(H)% (A.28)



B.1.

Appendix B

Measures of humidity

The water vapor content of the air is important to compute the latent heat flux between the air and the ocean. It
also intervenes in the long-wave radiation due to the greenhouse effect. Unfortunately, several ways exist to express
the humidity (absolute humidity, relative humidity, specific humidity, partial pressure of water vapor, mixing ratio,
dew point temperature, ... ). Due to this proliferation of humidity measures, it might be necessary to convert the
humidity measure provided by the atmospheric model to the humidity measure need by the ocean model.

Definitions

Absolute humidity : The absolute humidity p, is the mass of water vapour per volume of wet air.

Density of dry air : The density of dry air p,4 is mass of air per volume of wet air.



Density of wet air : The density of wet air p is mass of air and water per volume of wet air.

All are related by:

Specific humidity : ¢,
Po Pu
qS = — = B2
14 Pv + Pd ( )

Mixing ratio ¢,: the mass of water vapor divided by the mass of dry air

Po_ _Pv_

QU: =
Pd P = Po

(8.3)

Dew point temperature Ty: The dew point is the temperature at which a given parcel of humid air must be
cooled, at constant barometric pressure, for water vapor to condense into water.

B.2. Mixing ratio and specific humidity

Mixing ratio and specific humidity are directly related by:

Y R
Pv + pd 1+qy

qs
and

. Po ds
P = Pv 1—4qs




B.3.

B.4.

The ideal gas law

For a mixture of ideal gases, the partial pressure of any component can be found from the ideal gas law applied
to that component only. The ideal gas law is applied to water vapor and dry air”

—~

e = poR,T B.6)
Pa = dedT (B.7

where T is temperature, e is water vapour pressure and p, is pressure of dry air. R, and Ry are the specific
gas constant for water vapor (462 J/(kg K)) and dry air respectively (287 J/(kg K)).

The total air pressure p is the sum of these partial pressures:

pP=e+Dpq (B.8)

For most application, only the ratio of these constants are important:

€= % — 0.62198 (B.9)

(&

Water vapour saturation pressure

Water vapour saturation pressure e is the maximum partial pressure that water vapor molecules would exert if
the air were saturated with vapor at a given temperature and pressure.

Several empirical formulas exists for the water vapor saturation pressure. Over liquid water, the Teten formula
approximates e (T, p):

(B.10)

17.502T
es(T, p) = 611.21 (1.0007 + 3.46 10" P) exp ( )

24097+ T



where P and e, are Pascal and T in degree Celsius.

B.5. Relative humidity

The relative humidity is defined by:
e
= — B.11
= (B.11)
It is often expressed in %. From the ideal gas law, it follows that:
Po
rh = — (B.12)
Ps
where p; is the density of water vapour in saturated air.

B.6. From water vapour pressure to specific humidity

To convert the from one humidity measure to another, it is convenient to use the water vapor pressure. As an
example, we derive the equation liking specific humidity and vapour pressure.



g = — (B.14)

Pv + Pd
R,T
= BT (B.15)
R, T + dedT
€e
= (B.16)
€e
= wtp_e (B.17)
€e
= — B.1
p+ (e—1e (B.18)

Since in general p >> e, the following approximation is often used:

ce
Lo~ & B.19
q ) (B.19)



Appendix C

NetCDF

NetCDF is a machine-independent file format for scientific data sets. Most numerical models save their output
as NetCDF files either directly or as a post-processing step. The file format allows to describe the saved data,
for example it allows to specify units and the meaning of the dimensions of the variables. The NetCDF library is
available at www.unidata.ucar.edu/software/netcdf/

C.1. Fortran 90
C.1.1. Reading NetCDF files

!
! Read data to a netcdf file
1
1


www.unidata.ucar.edu/software/netcdf/

Compile with something like:

Execute:
./read_netcdf
program read_netcdf

use netcdf
implicit none

integer :: ncid, status, dimids(2), varid
integer :: 1i,]j

real :: temp(6,4), valid_range(2)
character(64) :: units

! open netcdf file example.nc in read-only

status = nf90_open(’example.nc’,nf90_nowrite,ncid)
call check_error(status)

! find the identifier for the variable ’temp’

status = nf90_inqg_varid(ncid, ’temp’, varid)
call check_error(status)

g95 -o read_netcdf read_netcdf.f90 -I.../netcdf/include -L.../netcdf/lib -lnetcdf



! retrieve the netcdf variable temp
! the variable temp must have the same size than in the NetCDF file

status = nf90_get_var(ncid, varid, temp)
call check_error(status)

! retrieve the attribute units of variable temp

status = nf90_get_att(ncid, varid, ’units’, units)
call check_error(status)

! retrieve the attribute valid_range of variable temp

status = nf90_get_att(ncid, varid, ’valid_range’, valid_range)
call check_error(status)

I close file

status = nf90_close(ncid)
call check_error(status)

write(6,*) ’Units: ’,units
write(6,*) ’Valid_range: ’,valid_range
write(6,*) ’Temp: ’

do j=1,4
write(6,*) (temp(i,j),i=1,6)
end do



C.1.2.

contains

subroutine check_error(status)
integer, intent ( in) :: status

if (status /= nf90_noerr) then

write(6,*) ’NetCDF error: ’,trim(nf90_strerror(status))
stop "Stopped"
end if

end subroutine check_error

end program read_netcdf

Writing NetCDF files

Write data to a netcdf file

Compile with something like:

g95 -o write_netcdf write_netcdf.f90 -I.../netcdf/include -L

1
1
]
!
|
1
1
]
! Execute:
]

1

./write_netcdf

.../netcdf/1ib -lnetcdf



program write_netcdf
use netcdf
implicit none

integer :: ncid, status, dimids(2), varid
integer :: 1i,j
real :: temp(6,4)

| create some data

do j=1,4
do i=1,6
temp(i,j) = i+j
end do
end do

! create netcdf file called example.nc
! nf90_clobber: overwrite if exists

status = nf90_create(’example.nc’,nf90_clobber,ncid)
call check_error(status)

! define the dimension longitude and latitude of size
| approxiate size

status = nf90_def_dim(ncid, ’longitude’, 6, dimids(1))



call check_error(status)

status = nf90_def_dim(ncid, ’latitude’, 4, dimids(2))
call check_error(status)

! create a variable temp of type float of the size 6x4
! (dimension longitude and latitude).

status = nf90_def_var(ncid, ’temp’, nf90_float, dimids, varid)
call check_error(status)

! define a string as attribute of the variable

status = nf90_put_att(ncid, varid, ’units’, ’degree Celsius’)
call check_error(status)

! define a vector of floats as attribute of the variable

status = nf90_put_att(ncid, varid, ’valid_range’, (/-10.,40./))
call check_error(status)

! end definitions: leave define mode

status = nf90_enddef (ncid)
call check_error(status)

| store the variable temp in the netcdf file



status = nf90_put_var(ncid,varid,temp)
call check_error(status)

! close netcdf file and all changes are written to disk

status = nf90_close(ncid)

call check_error(status)

write(6,*) ’example.nc file created. You might now inspect this file’
write(6,*) ’with the shell command "ncdump example.nc"’

contains

subroutine check_error(status)
integer, intent ( in) :: status

if (status /= nf90_noerr) then

write(6,*) ’NetCDF error: ’,trim(nf90_strerror(status))
stop "Stopped"
end if

end subroutine check_error

end program write_netcdf



C.2. Matlab and Octave

For Matlab you need mexcdf and the NetCDF toolbox from http://mexcdf.sourceforge.net/. For Octave
you need to install Octcdf from http://ocgmodl.marine.usf.edu/octcdf

C.2.1. Reading NetCDF files

% Example for reading a netcdf file
% in Matlab and Octave

% open netcdf file example.nc in read-only
nc = netcdf (’example.nc’,’r’);

% retrieve the netcdf variable temp
temp = nc{’temp’}(:)’;

% retrieve the attribute units of variable temp
temp_units = nc{’temp’}.units;

% retrieve the attribute valid_range of variable temp
temp_valid_range = nc{’temp’}.valid_range;

% retrieve the global attribute history
global_history = nc.history;

close(nc)


http://mexcdf.sourceforge.net/
http://ocgmod1.marine.usf.edu/octcdf

C.2.2. Writing NetCDF files

% Example for creating a netcdf file
% in Matlab and Octave

% create some variables to store them in a netcdf file

latitude = -90:1:90;

longitude = -179:1:180;

[y,x] = meshgrid(pi/180 * latitude,pi/180 * longitude);
temp = cos(2*x) .* cos(y);

= — e mmm yA
% yA
% write data to a netcdf file %
% %
et %

% create netcdf file called example.nc
% ’c’ = ’clobber’: overwrite if exists

nc = netcdf (’example.nc’,’c’);

% define the dimension longitude and latitude of size
% 360 and 181 respectively.

nc(’longitude’) = 360;
nc(’latitude’) = 181;



% coordinate variable longitude
% create a variable longitude of type double with
% 360 elements (dimension longitude) .

nc{’longitude’} = ncdouble(’longitude’);

% store the octave variable longitude in the netcdf file
nc{’longitude’}(:) = longitude;

% define a string attribute of the variable longitude
nc{’longitude’}.units = ’degree West’;

% coordinate variable latitude
nc{’latitude’} = ncdouble(’latitude’);;
nc{’latitude’}(:) = latitude;
nc{’latitude’}.units = ’degree North’;

% define variable temp

% create a variable temp of type double of the size 360x181
% (dimension latitude, longitude).

nc{’temp’} = ncdouble(’latitude’,’longitude’);

% store the octave variable temp in the netcdf file
nc{’temp’}(:) = temp’;



% define a
nc{’temp’}.

% define a
nc{’temp’}.

% define a
nc.history

string attribute of the variable
units = ’degree Celsius’;

vector of doubles attribute of the variable
valid_range = [-10 40];

global string attribute
= ’netcdf file created by example_netcdf.m in octave’;

% close netcdf file and all changes are written to disk

close(nc)

disp([’example.nc file created. You might now inspect this file"’]);
disp([’with the shell command "ncdump -h example.nc"’]);
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