Ocean Assimilation Kit (OAK)
User guide

Alexander Barth, Luc Vandenbulcke
June 7, 2013

1 Structure of the software

The software is structured in different modules

e ufileformat: Binary output and input of large 1D, 2D or 3D matrices in the
GHER or NetCDF.

e initfile: Input of integers, floating numbers, strings and small vectors of those
data types.

e matoper: Basic matrix operating: multiplication, matrix inversion, eigenvalue/eigenvectors
and singular value decomposition (relying on BLAS and LAPACK).

e date: module for conversion between modified Julian day number and Gregorian
date.

e grids: interpolation from one grid to another of 1D, 2D or 3D data.
e rrsqrt: The analysis equation

e assimilation: I/O of state vector, observations, error space and observation op-
erator. Analysis routine with input/output and computation of diagnostics.

These modules can be either used for specific task with standalone programs ?? or by a
hydrodynamic model in the case of a simulation assimilating observations. The GHER
hydrodynamic model drives the data assimilation modules trough the following subrou-
tines:

e dainit: initialises of the data assimilation modules
e daobs: loads of the next observation to assimilate
e daanalysis: performs the analysis

e damoderr: propagates the error covariance of the model

2 Module: ufileformat

This module is used for binary output and input of large 1D, 2D or 3D matrices. The
GHER and a subset of the NetCDF format is currently supported. The matrix can contain
exclusion points (“holes”). Matrices A where the elements are a linear combination of
the indices can also be efficiently represented:

A(iaja k) = a0+a1i+a2j+a3k (1)
Only the coefficient ag, ag, ag and a4 are stored. These file are called degenerated. For
example, the longitude and latitude of each grid point can often be expressed in this way.

For the GHER format, each file represent a real matrix. If the file names ends with .gz,
then the file is uncompressed (with gunzip) in the user’s temporary directory defined
by the environment variable $TMPDIR (or by default in /tmp). Simple Fortran 90-style
extraction can also by performed with the module ufileformat. A coma separated list
of indices or ranges of indices in parenthesis can be appended to the file name, if only a
subsection of the matrix should be loaded.

For example if the file toto.TEM is a 10 x 10 x 10 matrix, the “file”:

toto.TEM(:,:,6) is 10x10x1 matrix containing all elements with the 3rd indices equal
to 6.

toto.TEM(:,end, :) is 10x1x10 matrix containing all elements with the 2nd indices equal
to 10.
toto.TEM(1:,:end,1:end) is 10x10x10 matrix equal to the original matrix

But no arithmetic with the indices (for example toto.TEM(:,end-1,:)) are allowed. If
data extraction is used with degenerated matrices, the four coefficient are changed ac-
cordingly to the subsection chosen.

Data extraction and automatic decompression can only be used for loading data.

A variable in a NetCDF file can be loaded by specifying a “file name” of the following
form:

NetCDF_filename#NetCDF_variable

If the NetCDF file name end with .gz, then the file is uncompressed as with the GHER
file format. The data extraction follows also the same rules as above. For example, the
following is a valid file name for loading a matrix.

file.nc.gz#temp(:,:,1)

The file file.nc.gz is first decompressed, then the slice with the 3rd indices equal to 1
of the variable temp is returned to the calling program.

The special value for missing data is stored in the variables attribute missing data. In
the case of degenerated file, the attribute shape must be present, containing the shape
of the matrix. The actual value of the variable contains the coefficients a;.

2.1 Order of the dimensions

The reported order of the dimensions depends on the tool that you are using to query
and access a file. Two types of ordering schemes exists:

column-major order : used by Fortran programs such as OAK
row-major order : used by C programs such as ncdump

The order of the dimensions for NetCDF follows the recommendation of the CF-convention.
If you query your NetCDF files with ncdump, the order of the dimensions should be time,

depth, latitude, longitude. For a Fortran program reading this file the dimensions with

automatically be longitude, latitude, depth and time since Fortran uses the column-major

order (as opposed to ncdump). For Fortran binary files, the order of the dimensions is

also longitude, latitude, depth and time.

3 The initialisation file

With the module initfile a program can read an integer number, floating number or
a character string from an initialisation file. Each line in this file is composed by a name
(called key), an equal sign and the value. For example:

runtype = 2
Geoflow.maxU = 0.3
logfile = ’assim.log’

When the program search for example the key “runtype”, it gets the integer 2. If a key
is present several times in the same initialisation file, then the last value found is taken.

The key can be composed by any alphanumeric character and by periods (.). In par-
ticular, spaces and a equal signs are not allowed within the key name. The wild cards
symbols *, 7 and brackets ([,]), are allowed but have a special meaning (see Paragraph
below).

Vectors of integers, floats and character strings are also supported. The values are sepa-
rated with commas and enclosed in brackets.

Model .variables = [’ETA’,’TEM’,’SAL’]
Model .maxCorrection = [0.3,3.,2.,0.3,3.,2.,0.3,3.,2.]

Blank lines are ignored and comments begin with the pound sign (#). It is recommended
to document the meaning and the possible values by a comments directly in the initiali-
sation file.

Entries in this files cannot be split across different lines. Before assigning a value to a
key you should know with type is expected: scalar or vector and number or characters.

If the type does not correspond, the program will be stopped.

Sometimes a sequence of keys are attributed to the same values:

http://en.wikipedia.org/wiki/Row-major_order
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/cf-conventions.html#dimensions

Obs001.path
0Obs002.path
Obs003.path

’/u/abarth/soft/Ligur3/0bs/’
’/u/abarth/soft/Ligur3/0bs/’
’/u/abarth/soft/Ligur3/0bs/’

In this case one can use wild cards and write the following:
Obs*.path = ’/u/abarth/soft/Ligur3/0bs/’

The meaning of the wild cards are the same as for file name generation of the Burne Shell
(see also man page of sh and gmatch).

4 Assimilation module

4.1 Reduced order analysis

Let N be the ensemble size, n the size of the state vector and m the observation space di-
mension. The best linear unbiased estimator (BLUE) of the model’s state vector given the
model forecast x/ with error covariance P/ and the observation y° with error covariance
R is given by x*:

x* = x!/ + K (y°— Hx/) (2)
K = P/H" (HP/H" +R) (3)
P* = P/ - KHP/ (4)

where H is the observation operator extracting the observed part of the state vector and
P¢ the error covariance of the analysis x*.

From the ensemble of forecast states x' where &k = 1,..., N one can compute the
ensemble mean
|
— (k)
x/ = N fo (5)
k=1
and ensemble covariance:
N
1 *®) = ® —F\7
Pl=_—— (xf —Xf> <xf —Xf) (6)
N -1 p

We construct the columns of the matrix S/ by:

N

(87), = TN (7)

where S7 is a n x N matrix, which each column being the difference between each member
its ensemble mean. Its mean over all columns it thus zero. As many other assimilation
schemes (SEEK, RRSQRT, ESSE, EnKF), P/ is decomposed in terms of this square root
matrix S7:

p/ = g/s/t 8)

Typically, the number of ensemble members /N is much smaller than the state vector size
n. We rewrite the Kalman Filter analysis, by avoiding any matrix of the size n x n:

K = (s/s/")H” [H(sfsz)HT + R} B (9)

— s/(Hs’)” [HS/(HS')" +R] (10)
— S/ [1+ (HS/)TR'HS/] " (HS/)" R (11)

Where the Sherman-Morison-Woodbury identity has been applied from (??) to (?7). This
identity can be expressed as:

ABT(C+BAB") ' = (A"' + B"C"'B) 'B’C! (12)
with A = I, B = HS/, C = R. That is, instead of performing the inverse in space of

matrix A the inverse is done in the space of the matrix C. We also substitute P/ in the
expression of the analysis covariance error P¢:

P — P/ _ KHP/ (13)
— s/s/" _KHus’s/” (14)
= /s — s/ 1+ (HS))"R'HS/] " (HS/)"R'HSS/" (15)
_ g [I — (1+ ES))TRHS!) ! (HS!)TR_lHS] s (16)

In order to avoid to form P* explicitly, we need to express P* also in terms of the square
root matrices S“.

P = 58" (17)

This is possible when the following eigenvalue decomposition is made :

(HS/)' R™'HS/ = UAU” (18)
where UTU =TI and where A is diagonal. U and A are both of the size N x N.

Using the decomposition (?7?) in equation (??) one obtains:

P* — 8/ [I—(I+UAU")'UAUT| S/ (19)
— S/ [I— (I+UAUT) ! (UAUT +1-1)] /" (20)
— S/ [1- 1+ UAU") (UAU” +1) + (I+ UAUT)|s/" (21)
= S/[I-I+I+UAUT))8/ (22)
= S/(1+UAUT) 'S (23)
— s/(UUT + UAUT) '8/ (24)
= S'U(T+A)UTS” (25)
= SIUT+A)V21+A)VUTST (26)

bt

So we found a square root decomposition of P in terms of S/U(I+ A)~'/2. But in order

to construct an ensemble from the columns of S?, its mean has to be zero. So we will
transform S® so that the identity (??) is preserved. One way to do this is

S* = S/U(I + A)V*UTQ (27)

The decomposition (?7?) can also be used in the computation of the Kalman gain K: by:

K = S/[1+(HS/)'R'HS] " (HS)"R™! (28)
— s/ [UU” + UAU"] T (BSY)TR ! (29)
= S'UI+A)'UTHESHTRT (30)

(2 is an orthogonal matrix chosen such that sum of all columns of S* is zero. This sum
can be obtained by multiplying to the right with a vector N x 1 with all elements equal
to 1 (Iyx1). Since S/Iy, is zero, S¥Iy; is also zero if:

UI+A)V2UTQINg = Iy (31)
Qlya UT+ AU Ty, (32)

We defined the normalised vectors w and v:

w — \/LNIM (33)
v = aUI+A) U Ty, (34)
2 is thus a matrix which rotates w onto v.
Qw =v (35)
It can be computed by:
Q=vw!’ + Hv)H(w)" (36)

where H(v) is the N x (N — 1) Householder matrix associated to the vector v, i.e. all
columns of H(v) are vectors perpendicular to v (?):

N
(v +sgn(vy))v;
H(V)N,j = - |VN| +1 ’ (38)
S is the square root of P*:
P¢ = §°8°” (39)

Based on x* and S®, an ensemble can be reconstructed:

x?®) = x4 /N —1 8% (40)

The bias aware analysis scheme of 7 is also implemented. But the error space S® is not
computed.

4.2 Configuration

The initialisation file of the assimilation module is composed mainly by four sections:
configuration of the model (model state vector, position of the individual variables,
error space of the model), observations to assimilate (observations, their position, their
error), eventual diagnostics of the analysis and miscellaneous flags.

4.2.1 The model

The following code contains the definition of the multivariate state vector. The key
Model.variables is a vector of character strings attributing to each variable a user
chosen name. The keys Model.gridX, Model.gridY, Model.gridZ and Model.mask are
vectors of file names. The files in Model.gridX and Model.gridY are degenerated and
give the longitude and latitude of each variable. The files in Model.gridZ can be plain
files and contains the depth. The key Model.mask is used to determine the sea-land
mask of each variable. The exclusion value (or missing value or _FillValue in NetCDF
terminology) marks a land point all other values, a sea points. Every files assembled into
a state vector should have physical values where mask assumes a sea point. The shape
of the arrays in Model.gridX, Model.gridY, Model.gridZ and Model.mask must be the
same.

The string in Model.path in prepended to each file names. Example:

[’ETA’ , TEM’ ,’SAL’]
[’ligur.X(:,:,end)’,’ligur.X’,’ligur.X’]
[’ligur.Y(:,:,end)’,’ligur.Y’,’ligur.Y’]
Z’]
Z’]

Model.variables
Model.gridX
Model.gridY
Model .gridZ
Model .mask
Model.path

[’ligur.Z(:,:,end)’,’ligur.Z’,’ligur.
[’ligur.Z(:,:,end)’,’ligur.Z’,’ligur.
’/u/abarth/soft/Ligur3/Data/’

For nested grids the variables of the same nested must be grouped and the groups must
be orders according to the resolution started with the highest resolution one. To each
model grid is associated a Model.gridnum: one for the highest resolution one, two of the
next highest resolution one and so one.

[’ TEM’ ,’SAL’ ,’TEM?, ’SAL’]

[’ligur.X’,’ligur.X’,’med.X’, ’med.X’]
[’ligur.Y’,’ligur.Y’,’med.Y’,’med.Y’]
[’ligur.Z’,’ligur.Z’,’med.Z’,’med.Z’]

Model.variables
Model.gridX
Model.gridY
Model.gridZ

Model .mask = [’ligur.Z’,’ligur.Z’,’med.Z’,’med.Z’]
Model.gridnum = [1, 1, 2, 2]
Model.path = ’/u/abarth/soft/Ligur3/Data/’

Mandatory keys

Key

Type

|

Description

ErrorSpace.dimension
ErrorSpace.init

integer
vector of strings

The dimension of the error space.

Each string is a Fortran format containing an
integer descriptor. The format is converted
into a file name with an internal write. The
integer is a number ranging from 1 to the di-
mension of the error space n. n vectors of file
names are formed and represent a error mode
in the state space. Their norm represent the
importance of the error mode and thus they
are in general not normed. Orthogonality is
not necessary.

Optional keys

’ Key Type \ Description
ErrorSpace.path string The path is prepended to all file names spec-
ified in ErrorSpace.*. The current path is
used by default.
ErrorSpace.scale real Each error mode is multiplied by this real

ErrorSpace.spaceScale

vector of strings

number. The default is 1.

Each error mode is multiplied element by el-
ement by this vector. The default is a vector
with all elements equal to 1.

4.2.2 Zones

When the local version of the assimilation algorithm (schemetype = 1) is used, then

the assimilation is performed in a number of zones independently. Zones are defined by
specifying a partition vector which has the same number of variables as the model state
vector and each variable has the same size as the corresponding Model .mask. This vector
contains only integer values starting with one and represent labels: all elements in the
state vector which have the same partition number belong to the same zone. For example,
for a state vector with 5 elements and the partition vector p:

Iy
T2
X = T3 P =
Ty
Ts

(41)

W NN = =

This partition vector defined three zones: the first zone contains elements z; and x», the
second zone 3 and x4 and the third zone x3. There should be no gaps in the partition
vector. For example the vector (1,1,2,2,4)7 would cause an error. In practice, the state
vector is partitioned along water columns. The assimilation is performed independently
in each zone using only observations within the search radius given by Zones.maxLength.

The weight of the observations

L
R/

1 1

is multiplied by a Gaussian function:

= —, exp(—(d/L)?) (42)

R R

where d is the horizontal distance (in m) the first point of a zone and a single observa-
tion and L a length-scale (in m) given by Zones.corrLength. Zones.maxLength and
Zones.corrLength have the same size as the model state vector. In most cases these
values are constant can be specified by, e.g.:

Zones.corrLength.const = [30e3, 30e3]
Zones.maxLength.const = [2000e3, 2000e3]
Key \ Type \ Description

Zones.partition
Zones.corrLength

Zones .maxLength

vector of strings
vector of strings

vector of strings

Each string is a file name containing the par-
tition file for the given model variable

Each string is a file name containing the cor-
relation length

Each string is a file name containing the
maximum correlation length

4.2.3 The observations

All set of simultaneous observation are ordered chronically and are attributed to a time
index starting with 001 (written always with three digits). In the following keys “XXX”
have to be replaced by the time index.

Mandatory keys

’ Key \ Type \ Description
ObsXXX.time 'yyyy-mm- yyyy=year (minimum 1 digit integer)
ddTHH:MM:ss” | mm=month (2 digits integer) dd=day (2

ObsXXX.value

ObsXXX.rmse

ObsXXX.mask

vector of strings
vector of strings

vector of strings

digits integer) HH=hour (2 digits integer)
MM=min (2 dig-ids integer) SS=second
(minimum 1 digit integer or real)

Each string is a file name containing the ac-
tual values of the observations

Each string is a file name containing the root
mean square error of the observations.

Each string is a file name containing the bi-
nary mask of the observations. Values where
the mask is different from 1 are rejected.

Optional keys

Key

Type

‘ Description

ObsXXX.

ObsXXX.

ObsXXX.

ObsXXX.

ObsXXX.

ObsXXX

ObsXXX.

ObsXXX.

variables

names

gridX
gridyY

gridz

.Hper(Qbs

operator

path

vector of strings

vector of strings

vector of strings
vector of strings
vector of strings
vector of strings
string

string

The names must correspond to the names
chosen in Model.variables. Unknown names
are treated as ”out of the grid” and are not
assimilated.

Each string is a description of the data type
of the observations. You can choose any
name meaningful to you. These names are
only used for the log-file. The default names
are Var01, Var02,...

Each string is a file name containing the lon-
gitude of the observations.

Each string is a file name containing the lat-
itude of the observations.

Each string is a file name containing the
depth of the observations.

The observation operator stored in a sparse
matrix form per observations

The observation operator stored in a sparse
matrix form.

The path is prepended to all file names spec-
ified in ObsXXX.*. The current path is used
by default.

The optional keys are used to create the observation operator. If it is applied to the state
vector, it extracts the observed variables at the location of the measurements. Several

ways exist to specify the observation operator.

1. ObsXXX.operator: the observation operator is directly given by the non zero ele-

ments. See also ?77.

2. ObsXXX.variables and ObsXXX.HperObs: the non zero elements of the observation
operator for each variable are given separately. The first column in 9 x x matrix is

ignored. See also 77.

3. ObsXXX.variables, ObsXXX.gridX, ObsXXX.gridY and ObsXXX.gridZ: the obser-
vation operator is created by a trilinear interpolation using the module grids.

Note that the individual arrays in 0bsXXX.value, ObsXXX.rmse, ObsXXX.mask, ObsXXX.gridX,
ObsXXX.gridY and ObsXXX.gridZ should have the same size.

Format of the observation operator

Only the non-zero elements of the observation operator are specified in the 9 x n matrix
(in column-major order) where n is the number of non-zero elements. Each column has

the following structure:

10

’ Observations H Model H ‘

var. in- | i-index | j-index | k-index || var. in- | i-index | j-index | k-index || Inter-

dex dex polation
coeffi-
cient

The first integer value is related to the observation. The index of the variable is the
position where the observed variable appears in 0bsXXX.value and i,j,k-index are the

three spatial indexes of a single scalar observation.

The integers in column 5 to 8 are related to the model state vector. Again the index
of the variable is the position where the observed variable appears in Model.variables
and i,j,k-index are the three spatial indexes of a single scalar model forecast. If one of
the model indexes is -1 the corresponding observation is treated ”out of grid” and the

associated weight will be zero.

The column 9 is a real value between 0 and 1 in the case of a simple trilinear interpolation.
The observation operator can be generated offline using a trilinear interpolation with the

tool ”genobsoper”.

4.2.4 Diagnostics

All diagnostics are optional and the corresponding files are output.

11

Key Type ‘ Description

DiagXXX.xf vector of strings | the model forecast

DiagXXX.Hxf vector of strings | the observed part of the model forecast

DiagXXX.Sf vector of strings | Each string is a Fortran format. For
the conversion into file names see the key
ErrorSpace.init. The files represent the
error modes of the model forecast.

DiagXXX.diagPf vector of strings | The diagonal elements of error covariance of
the model forecast.

DiagXXX.diagHPfHT vector of strings | The diagonal elements of error covariance of
the observed part of the model forecast

DiagXXX.stddevxf vector of strings | Standard deviation of the error of the model
forecast.

DiagXXX.stddevHxf vector of strings | Standard deviation of the error of the ob-
served part of the model forecast.

DiagXXX.path string The path is prepended to all file names spec-
ified in DiagXXX.*. The current path is used
by default.

DiagXXX.xa vector of strings | the analysis

DiagXXX.Hxa vector of strings | the observed part of the analysis

DiagXXX.Sa vector of strings | Each string is a Fortran format. For
the conversion into filenames see the key
ErrorSpace.init. The files represent the
error modes of the analysis.

DiagXXX.diagPa vector string The diagonal elements of error covariance of
the analysis.

DiagXXX.diagHPaHT vector of strings | The diagonal elements of error covariance of
the observed part of the analysis

DiagXXX.stddevxa vector of strings | Standard deviation of the error of the anal-
ysis.

DiagXXX.stddevHxa vector of strings | Standard deviation of the error of the ob-
served part of the analysis.

DiagXXX.H strings the observation operator

DiagXXX.yo vector of strings | The observations.

DiagXXX.invsqrtR vector of strings | The inverse of the root mean square error
of the observations. If a scalar observation
point has been eliminated (out of the model
grid for example) its weight is zero.

DiagXXX.xa-xf vector of strings | The analysis increment

DiagXXX.yo-Hxf vector of strings | the observation minus the model forecast at
the observation points

DiagXXX.yo-Hxa vector of strings | the observation minus the model analysis at
the observation points

DiagXXX.Hxa-Hxf vector of strings | analysis increment at the observation points

DiagXXX.path string The path is prepended to all filenames spec-

ified in DiagXXX.*. The current path is used
by default.

12

4.2.5 miscellaneous flags

Key

\ Type

Description

nbnest
assimnum

runtype

schemetype

moderrtype

biastype

Bias.gamma
Bias.init
joinvectors

logfile

debugfile

integer
integer

integer

integer

integer

integer

real
vector of string
integer

string

string

Number of nested grids

Number between 1 and nbnest different for
each model. The model with assimnum does
the assimilation

possible values of runtype are:

0: do nothing, i.e. a pure run of the model

1: still do not assimilate, but compare model
to observations

2: assimilate observations

possible values of schemetype are:
0: global assimilation (default)

1: local assimilation (Zones need to be de-
fined)

possible values of moderrtype are:
0: optimal interpolation Pf constant

1: forgetting factor approximation

possible values of biastype are:
0: standard bias-blind analysis

1: A fraction of the error (gamma) is a sys-
tematic error and the rest (1-gamma)
is random (?)

fraction of the error with is systematic

the initial estimation of the bias

If joinvectors is 1 then the variables of the
nested grids will be assembled to one multi-
grid state vector

File contains simple diagnostics such as rmse
with observations

File contains debugging information is the
code was compiled with the flag ~-DDEBUG

13

5 Standalone programs

5.1 Program assim
The standalone program assim can be used to test the assimilation. The program can
be called from the command line:

assim <initfile> <time index>

The first argument is the initialisation file and the second argument is the time index of
the observation to assimilate. All keys described in 7?7 have the same meaning for the
program assim. But the forecast has to be specified by the following keys.

’ Key \ Type \ Description
ForecastXXX.value vector of strings | the forecast
ForecastXXX.path string The path is prepended to all filenames spec-

ified in ForecastXXX.value. The current
path is used by default.

If the program is called with three arguments:
assim <initfile> <start time index> <end time index>

All assimilation cycles be between the two time indexes are performed in chronological
order.

5.2 Program genobsoper

The standalone program genobsoper generate the observation matrix.
genobsoper <initfile> <time index>

The first argument is the initialisation file and the second argument is the time index of
the observation for witch the observation operator has to be created. All keys described
in 7?7 have the same meaning for the program genobsoper. But the only diagnostic key
used is DiagXXX.H.

If the program is called with three arguments:

genobsoper <initfile> <start time index> <end time index>

The action is repeated for all time indexes between the start and the end time index.
5.3 Program applyobsoper

The standalone program applyobsoper extracts from a state vector the observations.

applyobsoper <initfile> <time index>

14

The first argument is the initialisation file and the second argument is the time index of
the observation for witch the observation operator has to be created. All keys described
in 7?7 have the same meaning for the program applyobsoper. But the only diagnostic
key used are DiagXXX.Hxf and DiagXXX.invsqrtR. If a scalar observation point has been
eliminated (out of the model grid for example) its weight in DiagXXX.invsqrtR is zero.
The state vector is specified as it is described in ?7.

If the program is called with three arguments:

applyobsoper <initfile> <start time index> <end time index>

The action is repeated for all time indexes between the start and end time index.

5.4 Program filteroper

The standalone program filteroper generates a sparse matrix witch acts as a spatial
filter in the model space.

filteroper <initfile>
For each variable the filter is a Gaussian function:

,(z—g’ﬁ ,(y—%’ﬂ,(z—g’)?
f($7 y? Z? xl? yl7 Z/) = Ne LJ; Ly LZ <43)
N is a normalisation factor taking in to account the land-sea mask. The parameters L,
L, and L, may be space dependent and have thus the same dimension as the state vector.
The required keys are:

’ Key ‘ Type ‘ Description

Model .mask vector of strings | sea-land mask of each variable

Model.gridX
Model.gridY
Model.gridZ
Model.path

Correlation.lenx
Correlation.leny
Correlation.lenz
Correlation.path

Filter

vector of strings
vector of strings
vector of strings
string

vector of strings
vector of strings
vector of strings
string

string

longitude of each variable (degenerated file)
latitude of each variable (degenerated file)
depth

The path is prepended to all filenames spec-
ified in Model.*. The current path is used
by default.

parameter L, in equation 77

parameter L, in equation 77

parameter L. in equation 77?7

The path is prepended to all filenames spec-
ified in Correlation.*. The current path is
used by default.

file name of the filter

5.5 Program opermul

opermul is a general purpose program witch multiply two sparse operators. It can be
used for example for multiplying a filter operator and a observation operator.

03 = 0201

15

(44)

O, is a operator mapping from space S; to Sy, Oy from S5 to S3 and thus the product
from S; to Ss.

opermul <initfile>

The required keys are:

] Key Type \ Description
Spacel.mask vector of strings | sea-land mask of space S
Spacel.path string The path is prepended to all filenames spec-

ified in Spacel.mask. The current path is
used by default.

Space?2.mask vector of strings | sea-land mask of space S}

Space2.path string The path is prepended to all filenames spec-
ified in Space2.mask. The current path is
used by default.

Space3.mask vector of strings | sea-land mask of space S

Space3.path string The path is prepended to all filenames spec-
ified in Space2.mask. The current path is
used by default.

Terml string file name of operator Oy
Term2 string file name of operator O,
Product string file name of the product Og

5.6 Matlab utility GenObsFile

The utility ” GenObsFile” provides an easy way to save all the observations, coming from
various sources, in a few files with the Net CDF format, and creates the .INIT file required
by the assimilation routines.

Options for GenObsFile must be specified in the header of the Matlab routine, as de-
scribed below:

e initheader: complete path & file name, of the file that must be copied on top of the
INIT file. This could be the "model” part of the .INIT file.

e diags: complete path & file of a sample ”diagnostic” part of the .INIT file. The
observation number should be replaced with <INDEX> and variable names with
<EXT>. This part will be (adapted and) copied for each observation set.

Example:
Diag<INDEX>.Hxf = [’xf.<EXT>’]
e Outdir : path where to store the new observations and .INIT file.

e Outfile : prefix of the new observation files

e maxX, minX, maxY, ..., minMJD: observations not within these ranges will be
ignored when creating the new observation files

16

e rmse : vector containing errors on the observations, in the following order:
[TEM SAL ETA other]=[...]

It will only be used by the assimilation routine if no other observation error covari-
ance R matrix is specified. GenObsFile only uses values corresponding to variables
present in your observations list.

e obstime : time of the day at which observations should be assimilated

e listfile : complete path-+file name for the listfile, which contains the original ob-
servations. It is build using sections. There must be at least one section in the
listfile. Each section contains a ”config” line followed by an arbitrary amount of
data lines. The config line starts with the keyword 'config’, and has the following
format: config VAR XY Z MJD

— VAR indicates how the observed data should be named in the .INIT file (TEM

— X might be (a) a complete path-+file name with the longitude data, corre-
sponding to the observations, (b) the keyword ’file’ if the longitude data is
written in a file with the same file name as the actual data, with extension .X

— Y (idem)
— Z (idem)

— MJD points to the file containing the MJD-time corresponding to the
— observations, and might be (a) a complete path+file name, (b) the

— keyword 'file’, (c¢) a datum in the format 1999-12-31, (d) a datum in
— the MJD format '51251’, (e) character limits to be found in the

— actual observations file name.

For example, if the actual file name is /home/johndoe/51657. TEM , MJD could
be 15-19 as those are the indexes pointing to 51657 in the file name. After each
config line, an arbitrary amount of observation files may be given. The filenames
may contain matrix delimiters, as in (1:100,2:5,:)

Example listfile:

17

config TEM ./Lion.X ./Lion.Y ./Lion.Z 1998-01-01

/home/ johndoe/observations/Lion00000480.TEM.gz(:, :,end)
config SAL ./Lion.X ./Lion.Y ./Lion.Z 1998-01-01
/home/johndoe/observations/Lion00000480.SAL.gz(:,:,end)
config TEM file file file file
/home/johndoe/observations/ctd02.1_03_aug_2241.TEM
/home/ johndoe/observations/ctd03.1_03_aug_1840.TEM
/home/ johndoe/observations/ctd04.1_04_aug_0747.TEM
config TEM ./ligur.SST.X ./ligur.SST.Y ./ligur.SST.Z 32-41
/scratch/johndoe/observtn/ligur1999-07-02.S5ST.gz
/scratch/johndoe/observtn/ligur1999-07-03.5ST.gz
/scratch/johndoe/observtn/ligur1999-07-04.SST.gz
/scratch/johndoe/observtn/ligur1999-07-10.SST.gz
/scratch/johndoe/observtn/ligur1999-07-11.8ST.gz

6 API

6.1 ufileformat

uload(filename,matrix,exclusion_value)

filename : character of strings, input. The filename of the matrix to load with
the extensions described in ?77.

matrix : 1D, 2D or 3D unallocated real pointer, output. The allocation of the
output matrix is done inside the subroutine.

exclusion_value : real, output: The exclusion value

usave(filename,matrix,exclusion_value)
filename : character of strings, input. The filename of the matrix to save.

matrix : 1D, 2D or 3D real matrix, input. The matrix to save.

exclusion_value : real, input: The exclusion value

18

