Ocean Assimilation Kit (OAK)
User guide

Alexander Barth, Luc Vandenbulcke
September 19, 2011

1 Structure of the software
The software is structured in different modules

e ufileformat: Binary output and input of large 1D, 2D or 3D matrixes in the
GHER or NetCDF.

e initfile: Input of integers, floating number, strings and small vectors of those
data types.

e matoper: Basic matrix operating: multiplication, matrix inversion, eigenvalue/eigenvectors
and singular value decomposition (relying and BLAS and LAPACK).

e date: module for conversion between modified Julian day number and Gregorian
date.

e grids: interpolation for one grid to another of 1D, 2D or 3D data.
e rrsqrt: The analysis equation

e assimilation: I/O of state vector, observations, error space and observation op-
erator. Analysis routine with input/output and computation of diagnostics.

These module can either be used for specific task with standalone programs ?? or by a
hydrodynamic model in the case of a simulation assimilating observations. The GHER
hydrodynamic model drives the data assimilation modules trough the following subrou-
tines:

e dainit: initializes of the data assimilation modules
e daobs: loads of the next observation to assimilate
e daanalysis: performs the analysis

e damoderr: propagates the error covariance of the model

2 Module: ufileformat

This module is used for binary output and input of large 1D, 2D or 3D matrixes. The
GHER and a subset of the NetCDF format is currently supported. The matrix can contain
exclusion points (“holes”). Matrices A where the elements are a linear combination of
the indices can also be efficiently represented:

A(iaja k) = a0+a1i+a2j+a3k (1)
Only the coefficient ag, ag, ag and a4 are stored. These file are called degenerated. For
example, the longitude and latitude of each grid point can often be expressed in this way.

For the GHER format, each file represent a real matrix. If the filenames ends with .gz,
then the file is uncompressed (with gunzip) in the user’s temporary directory defined
by the environment variable $TMPDIR (or by default in /tmp). Simple Fortran 90-style
extraction can also by performed with the module ufileformat. A coma separated list
of indices or ranges of indices in parenthesis can be appended to the filename, if only a
subsection of the matrix should be loaded.

For example if the file toto.TEM is a 10 x 10 x 10 matrix, the “file”:

toto.TEM(:,:,6) is 10x10x1 matrix containing all elements with the 3rd indices equal
to 6.

toto.TEM(:,end, :) is 10x1x10 matrix containing all elements with the 2nd indices equal
to 10.
toto.TEM(1:,:end,1:end) is 10x10x10 matrix equal to the original matrix

But no arithmetics with the indices (for example toto.TEM(:,end-1,:)) are allowed.
If data extraction is used with degenerated matrixes, the four coefficient are changed
accordingly to the subsection chosen.

Data extraction and automatic decompression can only be used for loading data.

A variable in a NetCDF file can be loaded by specifying a “filename” of the following
form:

NetCDF_filename#NetCDF_variable

If the NetCDF filename end with .gz, then the file is uncompressed as with the GHER
file format. The data extraction follows also the same rules as above. For example, the
following is a valid filename for loading a matrix.

file.nc.gz#temp(:,:,1)

The file file.nc.gz is first decompressed, then the slice with the 3rd indices equal to 1
of the variable temp is returned to the calling program.

The special value for missing data is stored in the variables attribute missing data. In
the case of degenerated file, the attribute shape must be present, containing the shape
of the matrix. The actual value of the variable contains the coefficients a;.

3 The initialisation file

With the module initfile a program can read an integer number, floating number or
a character string from an initialisation file. Each line in this file is composed by a name
(called key), an equal sign and the value. For example:

runtype = 2
Geoflow.maxU = 0.3
logfile = ’assim.log’

When the program search for example the key “runtype”, it gets the integer 2. If a key
is present several times in the same initialisation file, then the last value found is taken.

The key can be composed by any alphanumeric character and by periods (.). In particu-
lar, spaces and a equal signs are not allowed within the key name. The wildcards symbols
* 7 and brackets ([]), are allowed but have a special meaning (see Paragraph below).

Vectors of integers, floats and character strings are also supported. The values are sepa-
rated with commas and enclosed in brackets.

Model.variables = [’ETA’,’TEM’,’SAL’]
Model .maxCorrection = [0.3,3.,2.,0.3,3.,2.,0.3,3.,2.]

Blank lines are ignored and comments begin with the pound sign (#). It is recommended
to document the meaning and the possible values by a comments directly in the initiali-
sation file.

Entries in this files cannot be splited across different lines. Before assigning a value to a
key you should know with type is expected: scalar or vector and number or characters.
If the type does not correspond, the program will be stopped.

Sometimes a sequence of keys are attributed to the same values:

0Obs001.path
0bs002.path
0bs003.path

’/u/abarth/soft/Ligur3/0bs/’
’/u/abarth/soft/Ligur3/0bs/’
’/u/abarth/soft/Ligur3/0bs/’

In this case one can use wildcards and write the following:
Obs*.path = ’/u/abarth/soft/Ligur3/0bs/’

The meaning of the wildcards are the same as for filename generation of the Burne Shell
(see also man page of sh and gmatch).

4 Assimilation module

4.1 Reduced order analysis

The best linear unbiased estimator (BLUE) of the model’s state vector given the model
forecast x/ with error covariance P/ and the observation y° with error covariance R is
given by x*:

x* = Xf+K(y°—fo> (2)
K — P/H' (HP/H'+R) (3)
P* = P/ - KHP/ (4)

where H is the observation operator extracting the observed part of the state vector and
P® the error covariance of the analysis x*. As many other assimilation schemes (SEEK,
RRSQRT, ESSE, EnKF) we decompose P/ in:

p/ = g/s/t (5)

Where S/ is a n x r matrix. The reduced order implementation is only effective if r is
small (r << n). Furthermore R must be diagonal.

In partice, the following eigenvalue decomposition is made (Brankart),

(HS/)' R'HS' = UAU” (6)

where UTU =TI and where A is diagonal. The Kalman gain K and S® can be computed
straigth foreward by:

K = S'U(1+A) U HSH'R™ (7)
s = sfu@a+A)Vut (8)

S* is the square root of P%:

P® = SaSaT (9)

The bias aware anlysis scheme of ? is also implemented. But the error space S is not
computed.

4.2 Configuration

The initialisation file of the assimilation module is composed mainly by four sections:
configuration of the model (model state vector, position of the individual variables,
error space of the model), observations to assimilate (observations, their position, their
error), eventual diagnostics of the analysis and miscellaneous flags.

4.2.1 The model

The following code contains the definition of the multivariate state vector. The key
Model.variables is a vector of character strings attributing to each variable a user
chosen name. The keys Model.gridX, Model.gridY, Model.gridZ and Model.mask are
vectors of filenames. The files in Model.gridX and Model.gridY are degenerated and
give the longitude and latitude of each variable. The files in Model.gridZ can be plain
files and contains the depth. The key Model.mask is used to determine the sea-land
mask of each variable. The exclusion value (or missing value in NetCDF terminology)
marks a land point all other values, a sea points. Every files assembled into a state vector
should have physical values where mask assumes a sea point. The shape of the arrays in
Model.gridX, Model.gridY, Model.gridZ and Model .mask must be the same. No check
is performed for the shape neither for the mask so be careful.

The string in Model.path in prepended to each filenames. Example:

Model .variables = [’ETA’ , > TEM?’ ,’SAL’]
Model.gridX [’ligur.X(:,:,end)’,’ligur.X’,’ligur.X’]
Model.gridY [’ligur.Y(:,:,end)’,’ligur.Y’,’ligur.Y’]
Model.gridZ [’ligur.Z(:,:,end)’,’ligur.Z’,’ligur.Z’]
Model .mask [’ligur.Z(:,:,end)’,’ligur.Z’,’ligur.Z’]
Model.path ’/u/abarth/soft/Ligur3/Data/’

For nested grids the variables of the same nested must be grouped and the groups must
be orders according to the resolution started with the highest resolution one. To each
model grid is associated a Model.gridnum: one for the highest resolution one, two of the
next highest resolution one and so one.

[’TEM’ ,’SAL’ ,’TEM’ , ’SAL’]
[’ligur.X’,’ligur.X’,’med.X’, ’med.X’]
[’ligur.Y’,’ligur.Y’,’med.Y’,’med.Y’]
[’ligur.Z’,’ligur.Z’,’med.Z’,’med.Z’]

Model.variables
Model.gridX
Model.gridY
Model .gridZ

Model .mask = [’ligur.Z’,’ligur.Z’,’med.Z’,’med.Z’]
Model.gridnum = [1, 1, 2, 2]
Model.path = ’/u/abarth/soft/Ligur3/Data/’

Mandatory keys

Key

Type

|

Description

ErrorSpace.dimension
ErrorSpace.init

integer
vector of strings

The dimension of the error space.

Each string is a Fortran format containing an
integer descriptor. The format is converted
into a filename with an internal write. The
integer is a number ranging from 1 to the di-
mension of the error space n. n vectors of
filenames are formed and represent a error
mode in the state space. Their norm repre-
sent the importance of the error mode and
thus they are in general not normed. Or-
thogonality is not necessary.

Optional keys

’ Key Type \ Description
ErrorSpace.path string The path is prepended to all filenames spec-
ified in ErrorSpace.*. The current path is
used by default.
ErrorSpace.space real Each error mode is multiplied by this real

ErrorSpace.spaceScale

vector of strings

number. The default is 1.

Each error mode is multiplied element by el-
ement by this vector. The default is a vector
with all elements equal to 1.

4.2.2 The observations

All set of simultaneous observation are ordered chronically and are attributed to a time
index starting with 001 (written always with three digits). In the following keys “XXX”
have to be replaced by the time index.

Mandatory keys

’ Key

Type

|

Description

ObsXXX.date

ObsXXX.time

ObsXXX.value

ObsXXX.rmse

ObsXXX.mask

'dd/mm/yyyy’

"hh:mm:ss][.ss|’

vector of strings
vector of strings

vector of strings

d=day (2 digids integer) m=month (2 digids
integer) y=year (minumum 1 digid integer)
h=hour (2 digids integer) m=min (2 digids
integer) s=second (minimum 1 digid integer
or real)

Each string is a filename containing the ac-
tual values of the observations

Each string is a filename containing the root
mean square error of the observations.

Each string is a filename containing the bi-
nary mask of the observations. Values where
the mask is different from 1 are rejected.

Optional keys

Key

Type

‘ Description

ObsXXX

ObsXXX.

ObsXXX.

ObsXXX.

ObsXXX.

ObsXXX.

ObsXXX.

ObsXXX.

variables

names

gridX
gridyY

gridz

.Hper(Qbs

operator

path

vector of strings

vector of strings

vector of strings
vector of strings
vector of strings
vector of strings
string

string

The names must correspond to the names
choosen in Model.variables. Unknown names
are treated as ”out of the grid” and are not
assimilated.

Each string is a desciption of the data type of
the observations. You can choose any name
meaningful to you. These names are only
used for the logfile. The default names are
Var01, Var02,...

Each string is a filename containing the lon-
gitude of the observations.

Each string is a filename containing the lat-
itude of the observations.

Each string is a filename containing the
depth of the observations.

The observation operator stored in a sparse
matrix form per observations

The observation operator stored in a sparse
matrix form.

The path is prepended to all filenames spec-
ified in ObsXXX.*. The current path is used
by default.

The optional keys are used to create the observation operator. If it is applied to the state
vector, it extracts the observed variables at the location of the measurements. Several
ways exist to specify the observation operator.

1. ObsXXX.operator: the observation operator is directly given by the non zero ele-
ments. See also 77.

2. ObsXXX.variables and ObsXXX.HperObs: the non zero elements of the observation
operator for each variable are given separately. The first column in 9 x x matrix is
ignored. See also 77.

3. ObsXXX.variables, ObsXXX.gridX, ObsXXX.gridY and ObsXXX.gridZ: the obser-
vation operator is created by a trilinear interpolation using the module grids.

Format of the observation operator

Only the non-zero elements of the observation operator are specified in the 9 x n matrix
where n is the number of non-zero elements. Each line has the following structure:

] Observations H Model H ‘

var. in- | i-index | j-index | k-index || var. in- | i-index | j-index | k-index || Inter-

dex dex polation
coeffi-
clent

The first integer value are related to the observation. The index of the variable is the
position where the observed variable appears in ObsXXX.value and i,j,k-index are the
three spatial indexes of a single scalar observation.

The integer in column 5 to 8 are related to the model state vector. Again the index
of the variable is the position where the observed variable appears in Model.variables
and i,j,k-index are the three spatial indexes of a single scalar model forecast. If one of
the model indexes is -1 the corresponding observation is treated ”out of grid” and the
associated weight will be zero.

The column 9 is a real value between 0 and 1 in the case of a simple a trilinear interpo-
lation. The observation operator can be generated offline using a trilinear interpolation
with the tool ”genobsoper”.

4.2.3 Diagnostics

All diagnostics are optional and the corresponding files are output.

Key Type ‘ Description

DiagXXX.xf vector of strings | the model forecast

DiagXXX.Hxf vector of strings | the observed part of the model forecast

DiagXXX.Sf vector of strings | Each string is a Fortran format. For
the conversion into filenames see the key
ErrorSpace.init. The files represent the
error modes of the model forecast.

DiagXXX.diagPf vector of strings | The diagonal elements of error covariance of
the model forecast.

DiagXXX.diagHPfHT vector of strings | The diagonal elements of error covariance of
the observed part of the model forecast

DiagXXX.stddevxf vector of strings | Standard deviation of the error of the model
forecast.

DiagXXX.stddevHxf vector of strings | Standard deviation of the error of the ob-
served part of the model forecast.

DiagXXX.path string The path is prepended to all filenames spec-
ified in DiagXXX.*. The current path is used
by default.

DiagXXX.xa vector of strings | the analysis

DiagXXX.Hxa vector of strings | the observed part of the analysis

DiagXXX.Sa vector of strings | Each string is a Fortran format. For
the conversion into filenames see the key
ErrorSpace.init. The files represent the
error modes of the analysis.

DiagXXX.diagPa vector string The diagonal elements of error covariance of
the analysis.

DiagXXX.diagHPaHT vector of strings | The diagonal elements of error covariance of
the observed part of the analysis

DiagXXX.stddevxa vector of strings | Standard deviation of the error of the anal-
ysis.

DiagXXX.stddevHxa vector of strings | Standard deviation of the error of the ob-
served part of the analysis.

DiagXXX.H strings the observation operator

DiagXXX.yo vector of strings | The observations.

DiagXXX.invsqrtR vector of strings | The inverse of the root mean square error
of the observations. If a scalar observation
point has been eliminated (out of the model
grid for example) its weight is zero.

DiagXXX.xa-xf vector of strings | The analysis increment

DiagXXX.yo-Hxf vector of strings | the observation minus the model forecast at
the observation points

DiagXXX.yo-Hxa vector of strings | the observation minus the model analysis at
the observation points

DiagXXX.Hxa-Hxf vector of strings | analysis increment at the observation points

DiagXXX.path string The path is prepended to all filenames spec-

ified in DiagXXX.*. The current path is used
by default.

4.2.4 miscellaneous flags

Key \ Type Description

nbnest integer Number of nested grids

assimnum integer Number between 1 and nbnest different for
each model. The model with assimnum does
the assimilation

runtype integer possible values of runtype are:

0: do nothing, i.e. a pure run of the model

1: still do not assimilate, but compare model
to observations

2: assimilate observations

moderrtype integer possible values of moderrtype are:
0: optimal interpolation Pf constant

1: forgetting factor approximantion

biastype integer possible values of biastype are:
0: standard bias-blind analysis

1: A fraction of the error (gamma) is a sys-
tematic error and the rest (1-gamma)
is random (?)

Bias.gamma real fraction of the error with is systematic
Bias.init vector of string the initial estimation of the bias
joinvectors integer If joinvectors is 1 then the variables of the
nested grids will be assembled to one multi-
grid state vector

logfile string File contains simple diagnostics such as rmse
with observations

debugfile string File contains debugging information is the
code was compiled with the flag ~-DDEBUG

5 Standalone programs

5.1 Program assim

The standalone program assim can be used to test the assimilation. The program can
be called from the command line:

assim <initfile> <time index>

10

The first argument is the initialisation file and the second argument is the time index
of the observation to assimilate. All keys descibed in ?? have the same meaning for the
program assim. But the forecast has to be specified by the following keys.

’ Key ‘ Type ‘ Description
ForecastXXX.value vector of strings | the forecast
ForecastXXX.path string The path is prepended to all filenames spec-

ified in ForecastXXX.value. The current
path is used by default.

If the program is called with three arguments:
assim <initfile> <start time index> <end time index>

All assimilation cycles be between the two time indexes are performed in chronical order.

5.2 Program genobsoper

The standalone program genobsoper generate the observation matrix.
genobsoper <initfile> <time index>

The first argument is the initialisation file and the second argument is the time index of
the observation for witch the observation operator has to be created. All keys descibed
in 7?7 have the same meaning for the program genobsoper. But the only diagnostic key
used is DiagXXX.H.

If the program is called with three arguments:

genobsoper <initfile> <start time index> <end time index>

The action is repeated for all time indexes between the start and end time index.

5.3 Program applyobsoper

The standalone program applyobsoper extract from a state vector the observations.
applyobsoper <initfile> <time index>

The first argument is the initialisation file and the second argument is the time index of
the observation for witch the observation operator has to be created. All keys descibed
in 77 have the same meaning for the program applyobsoper. But the only diagnostic
key used are DiagXXX.Hxf and DiagXXX.invsqrtR. If a scalar observation point has been
eliminated (out of the model grid for example) its weight in DiagXXX.invsqrtR is zero.
The state vector is specified as it is descibed in 77.

If the program is called with three arguments:

applyobsoper <initfile> <start time index> <end time index>

The action is repeated for all time indexes between the start and end time index.

11

5.4 Program filteroper

The standalone program filteroper generates a sparse matrix witch acts as a spatial

filter in the model space.
filteroper <initfile>

For each variable the filter is a gaussian function:

_@=a"H? (w2 _ (z-2)?

f(x7 y? Z? ‘/I;IJ yl7 Z/) = Ne

L2 L2 L2 (10)

N is a normalisation factor taking in to account the land-sea mask. The parameters L,
L, and L, may be space dependent and have thus the same dimension as the state vector.

The required keys are:

] Key

Type

\ Description

Model .mask
Model.gridX
Model.gridY
Model.gridZ
Model.path

Correlation.lenx
Correlation.leny
Correlation.lenz
Correlation.path

Filter

vector of strings
vector of strings
vector of strings
vector of strings
string

vector of strings
vector of strings
vector of strings
string

string

sea-land mask of each variable

longitude of each variable (degenerated file)
latitude of each variable (degenerated file)
depth

The path is prepended to all filenames spec-
ified in Model.*. The current path is used
by default.

parameter L, in equation 77

parameter L, in equation 77

parameter L. in equation 77?7

The path is prepended to all filenames spec-
ified in Correlation.*. The current path is
used by default.

filename of the filter

5.5 Program opermul

opermul is a general purpose program witch muliply two sparse operators. It can be used
for example for mulipling a filter operator and a observation operator.

03 - 0201

(11)

O, is a operator mapping from space S; to Sy, O, from S5 to S3 and thus the product

from Sl to 53.
opermul <initfile>

The required keys are:

12

Key Type ‘ Description

Spacel.mask vector of strings | sea-land mask of space S;

Spacel.path string The path is prepended to all filenames spec-
ified in Spacel.mask. The current path is
used by default.

Space?2.mask vector of strings | sea-land mask of space S

Space2.path string The path is prepended to all filenames spec-
ified in Space2.mask. The current path is
used by default.

Space3.mask vector of strings | sea-land mask of space S;

Space3.path string The path is prepended to all filenames spec-
ified in Space2.mask. The current path is
used by default.

Terml string filename of operator O
Term?2 string filename of operator O,
Product string filename of the product O3

5.6 Matlab utility GenObsFile

The utility ” GenObsFile” provides an easy way to save all the observations, coming from
various sources, in a few files with the netcdf format, and creates the .INIT file requiered
by the assimilation routines.

Options for GenObsFile must be specified in the header of the Matlab routine, as de-
scribed below:

e initheader: complete path & filename, of the file that must be copied on top of the
ANIT file. This could be the "model” part of the .INIT file.

e diags: complete path & file of a sample ”diagnostic” part of the .INIT file. The
observation number should be replaced with <INDEX> and variable names with
<EXT>. This part will be (adapted and) copied for each observation set.

Example:
Diag<INDEX>.Hxf = [’xf.<EXT>’]

e Outdir : path where to store the new observations and .INIT file.
e Qutfile : prefix of the new observation files

e maxX, minX, maxY, ..., minMJD: observations not within these ranges will be
ignored when creating the new observation files

e rmse : vector containing errors on the observations, in the following order:

[TEM SAL ETA other]=[...]

13

It will only be used by the assimilation routine if no other observation error covari-
ance” R” matrix is specified. GenObsFile only uses values corresponding to variables
present in your observations list.

obstime : time of the day at which observations should be assimilated

listfile : complete path+filename for the listfile, which contains the original obser-
vations. It is build using sections. There must be at least one section in the listfile.
Each section contains a ”config” line followed by an arbitrary amount of data lines.
The config line starts with the keyword 'config’, and has the following format: con-
fig VAR XY Z MJD

— VAR indicates how the observed data should be named in the .INIT file (TEM

— X might be (a) a complete path+filename with the longitude data, corre-
spondig to the observations, (b) the keyword ’file’ if the longitude data is
written in a file with the same filename as the actual data, with extention .X

— Y (idem)
— Z (idem)

— MJD points to the file containing the MJD-time corresponding to the
— observations, and might be (a) a complete path+filename, (b) the

— keyword 'file’, (c¢) a datum in the format 1999-12-31, (d) a datum in
— the MJD format '51251’, (e) character limits to be found in the

— actual observations filename.

For example, if the actual filename is /home/johndoe/51657. TEM , MJD could be
15-19 as those are the indexes pointing to 51657 in the filename. After each config
line, an arbitrary amount of observation files may be given. The filenames may
contain matrix delimiters, as in (1:100,2:5,:)

Example listfile:

config TEM ./Lion.X ./Lion.Y ./Lion.Z 1998-01-01
/home/ johndoe/observations/Lion00000480.TEM.gz(:, :,end)
config SAL ./Lion.X ./Lion.Y ./Lion.Z 1998-01-01
/home/johndoe/observations/Lion00000480.SAL.gz(:,:,end)
config TEM file file file file
/home/johndoe/observations/ctd02.1_03_aug_2241.TEM

14

/home/johndoe/observations/ctd03.1_03_aug_1840.TEM

/home/ johndoe/observations/ctd04.1_04_aug_0747.TEM

config TEM ./ligur.SST.X ./ligur.SST.Y ./ligur.SST.Z 32-41
/scratch/johndoe/observtn/ligur1999-07-02.S5ST.gz
/scratch/johndoe/observtn/ligur1999-07-03.5ST.gz
/scratch/johndoe/observtn/ligur1999-07-04.5ST.gz
/scratch/johndoe/observtn/ligur1999-07-10.SST.gz
/scratch/johndoe/observtn/ligur1999-07-11.SST.gz

6 API

6.1 ufileformat

uload(filename,matrix,exclusion_value)

filename : character of strings, input. The filename of the matrix to load with
the extensions descibed in 77?.

matrix : 1D, 2D or 3D unallocated real pointer, output. The allocation of the
output matrix is done inside the subroutine.

exclusion value : real, output: The exclusion value

usave(filename,matrix,exclusion_value)
filename : character of strings, input. The filename of the matrix to save.

matrix : 1D, 2D or 3D real matrix, input. The matrix to save.

exclusion_value : real, input: The exclusion value

15

