Stochastic array design with the sangoma_arm tool

Pierre De Mey, LEGOS, Toulouse

SANGOMA project meeting Liège, 1-2 avril 2014

A simple problem

x augmented state vector (n,1) over time interval of interest

(let me insist on the fact that this is an augmented state vector – everything that will be shown in this talk includes time as well as space in the definition of observations and prior state estimate)

 \mathbf{y}° observations (*p*,1) verifying $\mathbf{y}^{\circ} = H(\mathbf{x}^{t}) + \varepsilon$, with:

H() observation operator (not necessarily linear, but use linearized approximation) $\varepsilon \in N(0, \mathbf{R})$

Q: how can we characterize the performance of an observational array (H, \mathbf{R}) ?

Assume we have a prior state estimate of \mathbf{x} and associated error statistics (if not, any observational array will bring valuable information proportionately to its cost):

$$\mathbf{x}^{f} = \mathbf{x}^{t} + \eta$$
, with:
 $\eta \in N(0, \mathbf{P}^{f})$

A qualitative/intuitive criterion of array performance

Incremental information brought in by the array (on top of prior):

Innovation vector $\mathbf{d} \equiv \mathbf{y}^o - \mathbf{y}^g = \mathbf{y}^o - H(\mathbf{x}^f) \approx \varepsilon - \mathbf{H}\eta$

The 2nd-order statistics of innovation can be used to characterize that incremental information:

 $\left\langle \mathbf{d}\mathbf{d}^{T}\right\rangle = \mathbf{R} + \mathbf{H}\mathbf{P}^{f}\mathbf{H}^{T}$

Qualitative/intuitive criterion of array performance:

• **R** "dominates"

 \rightarrow most of the discrepancies are attributable to observational error

 \rightarrow observations are not very useful

- $\mathbf{HP}^{f}\mathbf{H}^{T}$ "dominates"
 - \rightarrow most of the discrepancies are attributable to prior state errors
 - \rightarrow observations can be used to identify and correct prior state errors

Towards a formal criterion of array performance

Two paths (among others) to formalize the intuitive order relationship...

<u>Bennett's "array modes"</u> (e.g. Bennett et al., 1997): these are orthonormal rotation vectors $\boldsymbol{\beta}$ obtained by diagonalizing the representer matrix: $\mathbf{HP}^{f}\mathbf{H}^{T} = \boldsymbol{\beta}\lambda\boldsymbol{\beta}^{T}$

 β : observable degrees of freedom of the physical system for that configuration λ : spectrum of RM, to be compared to the diagonal of **R** (obs. noise floor)

<u>Le Hénaff & De Mey</u> (Le Hénaff et al., 2009): in the general case of nonhomogeneous, non-diagonal **R**, and observational samples scattered in time, space, and across variables, use spectrum σ and array modes μ of the scaled representer matrix χ : $\chi = \mathbf{R}^{-1/2} \mathbf{H} \mathbf{P}^{f} \mathbf{H}^{T} \mathbf{R}^{-1/2} = \mu \sigma \mu^{T}$

 μ : spectrum of SRM, to be compared to the diagonal of **I** (obs. noise floor)

Representer Matrix Spectrum (RM Spectrum) method

Le Hénaff, De Mey and Marsaleix, Ocean Dynamics, 2009:

Scaled Representer Matrix: $\chi = \mathbf{R}^{-1/2} \mathbf{H} \mathbf{P}^{f} \mathbf{H}^{T} \mathbf{R}^{-1/2} = \mu \boldsymbol{\sigma} \boldsymbol{\mu}^{T}$ (RMS1)

- μ : "array modes"
- σ : spectrum of SRM, to be compared to the diagonal of **I** (obs. noise floor)

From (RMS1) and the orthogonality of array modes:

$$\boldsymbol{\mu}^{T}\boldsymbol{\chi}\boldsymbol{\mu} = \boldsymbol{\mu}^{T}\mathbf{R}^{-1/2}\mathbf{H}\mathbf{P}^{f}\mathbf{H}^{T}\mathbf{R}^{-1/2}\boldsymbol{\mu} = \boldsymbol{\sigma}$$
(RMS2)

- σ appears as a rotated scaled representer matrix in the new basis defined by μ^{T}
- $\rho_{\mu} = \mathbf{P}^{f} \mathbf{H}^{T} \mathbf{R}^{-1/2} \boldsymbol{\mu}$ can be seen as a matrix of representers for the array modes = "modal representers"

Stochastic implementation of RM analysis (1/2) (ArM, De Mey, 2010)

Assume we have a way of generating *m* prior error samples e.g. from forecast Ensemble anomalies, or stochastic modelling.

Matrix of samples (centered): \mathbf{A}^{f}

We get stochastic estimates:

•
$$\hat{\mathbf{P}}^{f} = \frac{1}{m-1} \mathbf{A}^{f} \mathbf{A}^{f^{T}}$$
 (ARM1)
• $\hat{\chi} = \frac{1}{m-1} (\mathbf{R}^{-1/2} \mathbf{H} \mathbf{A}^{f}) (\mathbf{R}^{-1/2} \mathbf{H} \mathbf{A}^{f})^{T} = \mathbf{S} \mathbf{S}^{T}$ (ARM2)
using $\mathbf{S} = \frac{1}{\sqrt{m-1}} \mathbf{R}^{-1/2} \mathbf{H} \mathbf{A}^{f}$ = scaled Ensemble observation anomalies (e.g. Sakov et al.,
Ocean Dynamics, 2009)

Stochastic implementation of RM analysis (2/2) (ArM, De Mey, 2010)

From (ARM2), the ev problem in the RM Spectrum method is now a sv problem in ArM.

We now have the following stochastic estimates:

- $\hat{\sigma} = RM$ spectrum estimate = squares of the singular values of S
- $\hat{\mu}$ = Array Mode estimates = singular vectors of **S**

•
$$\hat{\mathbf{\rho}}_{\mu} = \frac{1}{\sqrt{m-1}} \mathbf{A} \mathbf{S}^T \hat{\mathbf{\mu}} = \text{Modal representer estimates}$$

In practice there is no limitation in the choice of observation operator.

- It can operate in space, time, and across variables.
- In practice we calculate \mathbf{HA}^{f} as $H(\mathbf{A}^{f})$ when calculating **S** (e.g. Ensemble members made to generate their own observation proxies).

SUBROUTINE sangoma_arm(&		
	<pre>nstate, nens, nob) BIND(C, name='</pre>	os, ndof, Af, Df, R, arm_spect, arm, arm_rep, status & 'sangoma_arm_")
! !	<i>PURPOSE</i> Calculate array m	nodes and associated quantities
! ! ! ! ! ! ! ! !	INPUT nstate nens nobs ndof Af Df	<pre>state size Ensemble size number of observations =MIN(nens,nobs) number of d.o.f.s of problem forecast ensemble anomalies, defined as Af(nstate,nens) same as Af in data space, defined as Df(nobs,nens) note: df can be directly generated by the model, or linearly calculated as H*Af, H(nobs,nstate) = obs.op. observation error covariance matrix, def as R(nobs,nobs)</pre>
! ! ! !	<i>OUTPUT</i> <i>arm_spect</i> <i>arm</i> <i>arm_rep</i> <i>status</i>	array mode spectrum, defined as arm_spect(ndof) array modes, defined as arm(nobs,ndof) modal representers, defined as arm_rep(nstate,ndof) status flag (0=success)
! ! ! ! ! ! !	NOTES The actual precision of REAL is to be provided by the compiler. Only KIND=8 will work with the current version (promotion of REAL to DOUBLE PRECISION) because of the use of Dxxxxx BLAS/LAPACK calls. This can be changed in a later version. State space and data space are n-dimensional + (optionally) time. Each state-space sample and data-space sample can contain information from several instants if desired. Modal representers can span space *and* time. 	

A simple 2D, univariate example (1/3)

A simple 2D, univariate example (2/3)

Two observational strategies:

- N-S triplet detects more d.o.f.s (3) amidst observational noise
- E-W triplet more redundant (1 d.o.f.)

A simple 2D, univariate example (3/3)

• 20 random samples with **P**^f statistics (Gaussian generator)

(Color scales not exactly the same – signs not important – only shapes are to be trusted)

Roscoff-Plymouth Ferrybox vs. Glider, [sangoma_]arm analysis

 Higher repeat cycle of ferrybox critical here, despite being surface only, because of HF model errors (linked to tidal front displacements)

Charria (Ifremer), Lamouroux (Noveltis), De Mey (LEGOS)

Online [sangoma_]arm diagnostic analysis with 4-D local EnKF

- Assimilate simulated <u>SWOT</u> wide-swath altimeter on 10-day orbit for 2 months in summer 2004 in Bay of Biscay
- Carry out ArM analysis <u>online</u> at each 10-day assim cycle (invariant H)
- Localized EnKF (BELUGA)
- Rank is approximately conserved through assimilation
- Spectra whiten in detectable range
 - Array info is being extracted
 - Mostly large-scale and mesoscale error processes constrained
 - No eigenvalue decrease for highfrequency shelf processes → need for sustained observations of such processes

RM Spectra (online), EnKF(1), WindErr(1)

Can array modes help Ensemble consistency analyses?

- Problem: check whether model forecast *pdf* (from Ensemble) and observations (innovation *pdf*) are consistent with each other
- Low-order array-space forecast pd's have broadest base (by design)
 - Hierarchize ensemble consistency checks from easiest to hardest to pass
 - Perhaps use some form of Brier score
- Sangoma_arm_CA tool in preparation

EW triplet, AR1 process, 500 members