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A simple problem

x augmented state vector (n,1) over time interval of interest 

(let me insist on the fact that this is an augmented state vector – everything that will be 

shown in this talk includes time as well as space in the definition of observations and 

prior state estimate) 
oy  observations (p,1) verifying    to H xy , with: 

H( ) observation operator (not necessarily linear, but use linearized approximation) 

),0( RN  

 

Q: how can we characterize the performance of an observational array (H, R)? 

 

Assume we have a prior state estimate of x and associated error statistics (if not, any 

observational array will bring valuable information proportionately to its cost): 

 tf xx , with: 

),0( fN P  



A qualitative/intuitive criterion of array performance

Incremental information brought in by the array (on top of prior): 

Innovation vector     Hxyyyd  fogo H   

The 2nd-order statistics of innovation can be used to characterize that incremental 

information: 

TfT HHPRdd 
 

Qualitative/intuitive criterion of array performance: 

 R “dominates”  

 most of the discrepancies are attributable to observational error  

 observations are not very useful 

 Tf HHP  “dominates” 

 most of the discrepancies are attributable to prior state errors  

 observations can be used to identify and correct prior state errors
 
 

 



Towards a formal criterion of array performance

Two paths (among others) to formalize the intuitive order relationship…  

 

Bennett’s “array modes” (e.g. Bennett et al., 1997): these are orthonormal rotation 

vectors  obtained by diagonalizing the representer matrix:  

TTf βλβHHP   

 : observable degrees of freedom of the physical system for that configuration 

 : spectrum of RM, to be compared to the diagonal of R (obs. noise floor) 

 

Le Hénaff & De Mey (Le Hénaff et al., 2009): in the general case of non-

homogeneous, non-diagonal R, and observational samples scattered in time, space, and 

across variables, use spectrum  and array modes  of the scaled representer matrix : 
TTf μσμRHHPRχ   2/12/1

 

 : spectrum of SRM, to be compared to the diagonal of I (obs. noise floor)  



Representer Matrix Spectrum (RM Spectrum) method

Le Hénaff, De Mey and Marsaleix, Ocean Dynamics, 2009:  

 

Scaled Representer Matrix: 
TTf μσμRHHPRχ   2/12/1

 (RMS1) 

 μ : “array modes” 

 σ  : spectrum of SRM, to be compared to the diagonal of I (obs. noise floor)  

 

From (RMS1) and the orthogonality of array modes: 

σμRHHPRμμχμ   2/12/1 TfTT
 (RMS2) 

 

 σ  appears as a rotated scaled representer matrix in the new basis defined by 
Tμ  

 μRHPρ 2/1 Tf

  can be seen as a matrix of representers for the array modes = 

“modal representers” 



Stochastic implementation of RM analysis (1/2) (ArM, De Mey, 2010)

Assume we have a way of generating m prior error samples e.g. from forecast Ensemble 

anomalies, or stochastic modelling. 

 

Matrix of samples (centered): fA  

 

We get stochastic estimates: 

 
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
  = scaled Ensemble observation anomalies (e.g. Sakov et al., 

Ocean Dynamics, 2009) 



Stochastic implementation of RM analysis (2/2) (ArM, De Mey, 2010)

 

From (ARM2), the ev problem in the RM Spectrum method  is now a sv problem in 

ArM. 

 

We now have the following stochastic estimates:  

 σ̂  = RM spectrum estimate = squares of the singular values of S 

 μ̂  = Array Mode estimates = singular vectors of S 

 μASρ ˆ
1

1
ˆ T

m
  = Modal representer estimates 

 

In practice there is no limitation in the choice of observation operator. 

 It can operate in space, time, and across variables. 

 In practice we calculate fHA as )( fH A  when calculating S  (e.g. Ensemble 

members made to generate their own observation proxies). 



SUBROUTINE sangoma_arm( & 

nstate, nens, nobs, ndof, Af, Df, R, arm_spect, arm, arm_rep, status & 

) BIND( C, name="sangoma_arm_" ) 

! PURPOSE

! Calculate array modes and associated quantities

! INPUT

! nstate state size

! nens Ensemble size

! nobs number of observations

! ndof =MIN(nens,nobs) number of d.o.f.s of problem

! Af forecast ensemble anomalies, defined as Af(nstate,nens)

! Df same as Af in data space, defined as Df(nobs,nens)

! note: df can be directly generated by the model, or

! linearly calculated as H*Af, H(nobs,nstate) = obs.op.

! R observation error covariance matrix, def as R(nobs,nobs)

! OUTPUT

! arm_spect array mode spectrum, defined as arm_spect(ndof)

! arm array modes, defined as arm(nobs,ndof)

! arm_rep modal representers, defined as arm_rep(nstate,ndof)

! status status flag (0=success)

! NOTES

! 1. The actual precision of REAL is to be provided by the compiler.  Only

!    KIND=8 will work with the current version (promotion of REAL to DOUBLE

!    PRECISION) because of the use of Dxxxxx BLAS/LAPACK calls.  This can

!    be changed in a later version.

! 2. State space and data space are n-dimensional + (optionally) time.

!    - Each state-space sample and data-space sample can contain 

!      information from several instants if desired.

!    - Modal representers can span space *and* time.



A simple 2D, univariate example (1/3)

Prior state error 
variance

Prior state error 
correlation



A simple 2D, univariate example (2/3)

Two observational strategies:

• N-S triplet detects more d.o.f.s (3) amidst observational noise

• E-W triplet more redundant (1 d.o.f.)



A simple 2D, univariate example (3/3)

• 20 random samples with Pf statistics (Gaussian generator)

EW triplet
Theoretical vs. 
sangoma_arm

RM spectrum estimates

Detectable modal representers

EW triplet NS triplet
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(Theor.) RM Spectrum

(Color scales not exactly the same – signs not 
important – only shapes are to be trusted)
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Roscoff-Plymouth Ferrybox vs. Glider, [sangoma_]arm analysis

• Higher repeat cycle of ferrybox critical here, 
despite being surface only, because of HF 
model errors (linked to tidal front 
displacements)

Charria (Ifremer), Lamouroux (Noveltis), De Mey (LEGOS)



Detectable range
(4 eigenvalues)

Colors =
EnKF iterations

Online [sangoma_]arm diagnostic analysis with 4-D local EnKF

• Assimilate simulated SWOT wide-swath 
altimeter on 10-day orbit for 2 months in 
summer 2004 in Bay of Biscay

• Carry out ArM analysis online at each 
10-day assim cycle (invariant H)

• Localized EnKF (BELUGA)

• Rank is approximately conserved 
through assimilation

• Spectra whiten in detectable range

– Array info is being extracted

– Mostly large-scale and mesoscale error 
processes constrained

– No eigenvalue decrease for high-
frequency shelf processes  need for 

sustained observations of such processes



Can array modes help Ensemble consistency analyses? 

• Problem: check whether model forecast pdf (from Ensemble) and 
observations (innovation pdf ) are consistent with each other 

• Low-order array-space forecast pd’s have broadest base (by design)

– Hierarchize ensemble consistency checks from easiest to hardest to pass

– Perhaps use some form of Brier score

• Sangoma_arm_CA tool in preparation

EW triplet, AR1 process, 500 members

Data space pd p(H*x) Array space pd p(mu*H*x)


