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A simple problem

X augmented state vector (n,1) over time interval of interest

(let me insist on the fact that this is an augmented state vector — everything that will be

shown in this talk includes time as well as space in the definition of observations anc
prior state estimate)

y° observations (p,1) verifying y° = H(x‘)+g, with:
H( ) observation operator (not necessarily linear, but use linearized approximation)
e N(O,R)

Q: how can we characterize the performance of an observational array (H, R)?

Assume we have a prior state estimate of x and associated error statistics (if not, any
observational array will bring valuable information proportionately to its cost):

X' =x"+7, with:
neN(O,P")



A qualitative/intuitive criterion of array performance

Incremental information brought in by the array (on top of prior):
Innovation vector d=y° —y? =y° — H(xf )z c—Hn

The 2nd-order statistics of innovation can be used to characterize that incremental
information:

(dd")=R+HP'H’
Quialitative/intuitive criterion of array performance:

e R “dominates”
—> most of the discrepancies are attributable to observational error
—> observations are not very useful
e HP'H™ “dominates”
—> most of the discrepancies are attributable to prior state errors
—> observations can be used to identify and correct prior state errors



Towards a formal criterion of array performance

Two paths (among others) to formalize the intuitive order relationship...

Bennett’s “array modes” (e.g. Bennett et al., 1997). these are orthonormal rotatior
vectors 3 obtained by diagonalizing the representer matrix:

HP'H™ =pAp’

B : observable degrees of freedom of the physical system for that configuration
A : spectrum of RM, to be compared to the diagonal of R (obs. noise floor)

Le Hénaff & De Mey (Le Hénaff et al., 2009): in the general case of non-
homogeneous, non-diagonal R, and observational samples scattered in time, space, anc

across variables, use spectrum o and array modes p of the scaled representer matrix y :
x — R—l/ZHPf HT R—1/2 — HGMT

i : spectrum of SRM, to be compared to the diagonal of I (obs. noise floor)




Le Hénaff, De Mey and Marsaleix, Ocean Dynamics, 2009:

Scaled Representer Matrix: y =R ™Y*HP'"H'R™Y? =pop’ (RMS1)
e 1 : “array modes”

e ¢ : spectrum of SRM, to be compared to the diagonal of I (obs. noise floor)

From (RMS1) and the orthogonality of array modes:
HTXHZHTR_llePfHTR_1/2u=G (RMSZ)

e ¢ appears as a rotated scaled representer matrix in the new basis defined by p'

e p,=P"H"R™?p can be seen as a matrix of representers for the array modes =

“modal representers”



Assume we have a way of generating m prior error samples e.g. from forecast Ensemble
anomalies, or stochastic modelling.

Matrix of samples (centered): A’

We get stochastic estimates:

e P L ATAT (ARM1)
m-1
. ;zzmil(RmHAf)(R“zHAf)T _SST (ARM2)
using S =

N R**HA' =scaled Ensemble observation anomalies (e.g. Sakov et al.,
m —
Ocean Dynamics, 2009)



From (ARM2), the ev problem in the RM Spectrum method is now a sv problem in
ArM.

We now have the following stochastic estimates:
e 6 = RM spectrum estimate = squares of the singular values of S

e 1 = Array Mode estimates = singular vectors of S

e p = : AS' L = Modal representer estimates

£ Udm=1

In practice there is no limitation in the choice of observation operator.
e |t can operate in space, time, and across variables.

e In practice we calculate HA"as H(A') when calculating S (e.g. Ensemble
members made to generate their own observation proxies).



SUBROUTINE sangoma_ arm( &
nstate, nens, nobs, ndof, Af, Df, R, arm spect, arm, arm rep, status &
) BIND( C, name="sangoma arm " )

! PURPOSE
! Calculate array modes and associated quantities

! INPUT

! nstate state size

! nens Ensemble size

! nobs number of observations

! ndof =MIN (nens,nobs) number of d.o.f.s of problem

I Af forecast ensemble anomalies, defined as Af (nstate,nens)
! Df same as Af in data space, defined as Df (nobs,nens)

! note: df can be directly generated by the model, or

! linearly calculated as H*Af, H(nobs,nstate) = obs.op.

' R observation error covariance matrix, def as R (nobs,nobs)
! OUTPUT

! arm spect array mode spectrum, defined as arm spect (ndof)

' arm array modes, defined as arm(nobs,ndof)

! arm rep modal representers, defined as arm rep (nstate,ndof)

! status status flag (O=success)

! NOTES

! 1. The actual precision of REAL is to be provided by the compiler. Only
§ KIND=8 will work with the current version (promotion of REAL to DOUBLE
! PRECISION) because of the use of Dxxxxx BLAS/LAPACK calls. This can

! be changed in a later version.

' 2. State space and data space are n-dimensional + (optionally) time.

! - Each state-space sample and data-space sample can contain

! information from several instants 1f desired.

! - Modal representers can sSpan space *and* time.



A simple 2D, univariate example (1/3)
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A simple 2D, univariate example (2/3)

Two observational strategies:

o N-S triplet detects more d.o.f.s (3) amidst observational noise
o E-W triplet more redundant (1 d.o.f.)

spectra of scaled representer matrices
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A simple 2D, univariate example (3/3)

20 random samples with Pf statistics (Gaussian generator)

Detectable modal representers
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Roscoff-Plymouth Ferrybox vs. Glider, [sangoma_J]arm analysis

Positions of Ferrybox backs and Glider section

Repr. Matrix Spectra (no unit)
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Online [sangoma_]Jarm diagnostic analysis with 4-D local EnKF

Assimilate simulated SWOT wide-swath
altimeter on 10-day orbit for 2 months in

summer 2004 in Bay of Biscay RM Spectra (online), EnKF(1), WindErr(1)
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p(H"xg)

Can array modes help Ensemble consistency analyses?

* Problem: check whether model forecast pdf (from Ensemble) and
observations (innovation pdf) are consistent with each other

e Low-order array-space forecast pd’s have broadest base (by design)
— Hierarchize ensemble consistency checks from easiest to hardest to pass
— Perhaps use some form of Brier score

e Sangoma_arm_CA tool in preparation

data-space pdf -- p(H*xg) -- m=500, EWtriplet, AR1 array-space pdf -- p(mu*H*xg) -- m=500, EWtriplet, AR1
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