Ensemble assimilation of JASON and ENVISAT altimetric observations with stochastic parameterization of model dynamical uncertainties

> Guillem Candille, Jean-Michel Brankart, and Pierre Brasseur

SANGOMA progress meeting – April 1-2, 2014

- 1. Stochastic parameterization of model uncertainties (in the large-scale benchmark)
- 2. Ensemble simulation, without data assimilation
- 3. Data assimilation experiment

1. Stochastic parameterization of model uncertainties

4.3 Uncertainties in the computation of density

In the model, the large-scale density is computed form large-scale temperature and salinity, using the sea-water equation of state.

However, because of the nonlinearity of the equation of state, unresolved scales produce an average effect on density.

Stochastic equation of state for the large scales

Stochastic parameterization

using a set of random T&S fluctuations ΔT_i et ΔS_i , i=1,...,p

to simulate unresolved T&S fluctuations

$$ho = rac{1}{2p}\sum_{i=1}^p \left\{
ho \left[T + \Delta T_i, S + \Delta S_i, p_0(z)
ight] +
ho \left[T - \Delta T_i, S - \Delta S_i, p_0(z)
ight]
ight\}$$

Leading behaviour of $\Delta \rho$:

$$\Delta \rho = \frac{\partial^2 \rho}{\partial T^2} \left(\frac{1}{2p} \sum_{i=1}^p \Delta T_i^2 \right) + 2 \frac{\partial^2 \rho}{\partial T \partial S} \left(\frac{1}{2p} \sum_{i=1}^p \Delta T_i \Delta S_i \right) + \frac{\partial^2 \rho}{\partial S^2} \left(\frac{1}{2p} \sum_{i=1}^p \Delta S_i^2 \right)$$

No effect if the equation of state is linear. Proportional to the square of unresolved fluctuations. 2. Ensemble simulation, without data assimilation

Ensemble with the large-case SANGOMA benchmark

Ensemble spread in the Gulf Stream region after 6 months (6 members among 96)

Spread on the TS vertical structure

Ensemble spread in the Gulf Stream region after 6 months

Rank histogram, after 6 months

Rank of JASON-1 altimetric observations in the ensemble simulation

Histogram of ranks in the Gulf Stream region

 \rightarrow We can start assimilating altimetric observations

3. Data assimilation experiment

<u>Method</u>: ensemble update with SEEK algorithm (~LETKF)

Specificities: localization (~433km), IAU, observation equivalent of ensemble at appropriate time

Ensemble size: 96

Perturbation: in the equation of state

Assimilated data: Jason-1, Envisat

Evolution of SSH ensemble spread

Ensemble standard deviation (SSH)

Ensemble standard deviation (SST and SSS)

Jason-1 observations: September 2005

→ Missing JASON-1 observations explaining the larger spread in September 2005

RCRV metrics

CRPS metrics

RELIABILITY

RESOLUTION

→ We improve resolution, without losing reliability with respect to free ensemble

Main characteristics of the method:

 Stochastic parameterization of model uncertainties (→ no inflation factor in the assimilation system)
 Observation equivalent of all ensemble members at appropriate time (→ 4D observational update)
 Ensemble incremental analysis update (IAU) (→ no time discontinuities in the updated ensemble)

Main outcomes of the experiment:

- The ensemble spread is sufficient to account for altimetric observations in the Gulf Stream region (↔ RH)
- 2) After assimilation has started, both forecast and IAU ensembles remain reliable (↔ CRPS reliability score)
- 3) Assimilation substantially improves the resolution of the ensemble (↔ CRPS resolution score)