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Need for covariance localization

I In ensemble assimilation schemes, the model error covariance P is represented by
an ensemble of model states x(k), k = 1, . . . , N (〈〉̇ is the ensemble average).

P = 〈(x− 〈x〉)(x− 〈x〉)T 〉 = XXT

I As N increases convergence is relatively slow (N−1/2) → sampling error.

I This sampling error leads to unrealistic long-range correlations.

I Covariance localization suppresses these long-range correlations based on the
horizontal distance based on a specified length-scale.



Issues with covariance localization

I Ad-hoc approach introduced by analogy to optimal interpolation (where it is
done for computational reasons).

I It can filter out realistic long-range correlations (for example introduced
through error in atmospheric fields).

I Spurious correlations between weakly related model variables close-by might
not be filtered (in particular in coupled models).

I Which length-scale to use when multiple processes with different scales are
present?

I Generally result in non-conservative assimilation scheme (even if the underlying
model is conservative)



Localization

I One can distinguish different localization approaches (e.g Nerger et al., 2012):

• covariance localization: every single observation point is assimilated se-
quentially and the correction are filtered by a localization function. (less
suited for parallel processing and the domain localization).

• domain localization: the state vector is decomposed into sub-domains
(e.g. single grid points or vertical columns) where the assimilation is per-
formed independently. Such algorithm are easily applied to parallel com-
puters.

I The conservation requires a coupling of a model grid points which is filtered-out
by the localization.

I Similar difficulty: non-local observation operator (e.g Campbell et al., 2010).



Local ensemble assimilation scheme with global con-
straints and conservation

I Global assimilation scheme have no problem in respecting linear conservation.

I Non-linear constraints can sometimes be transformed into linear constraints by
a careful transformation model variable. Example:

• For sea ice concentration ci and sea ice height hi, then :∫
Ω

cihi dx = const (1)

in the absence of ice melting and ice formation.

• This conservation property is non-linear if a state vector including ci and hi
.

• ... but becomes linear if the state vector includes cihi and ci (or hi).



Method

I We propose a local assimilation scheme which is local and can satisfy global
conservation properties and non-local observation operators.

I In essence:

• Based on covariance localization

• Localize ensemble covariance matrix (by using an element-wise matrix prod-
uct).

• Modify this localized covariance matrix to so that the uncertainty of the
total amount of the conserved quantity is zero.

• Algorithm should work on an ensemble as input (model forecast) and
produce an ensemble as outputs (analysis).

• Avoid the formation of huge matrices.

• One should recover the original Kalman filter analysis if the covariance does
not have spurious long-range correlation.

• Parallel algorithm.



Variants of the scheme (overview)

I We have now a way to compute the analysis increment by applying the Kalman
gain the difference between observation the model results

xa = xf + K(yo −Hxf )

I We know how to update the mean of the ensemble, but how to update the whole
ensemble?

I Different variants:

• Using perturbed observations and apply the analysis update for every mem-
ber individually

• Avoid using perturbed observation, write-out formally Pa (the analysis error
covariance) and project it on a suitable subspace (suffix Pc ).

• Modify the previous approach such that the analysis ensemble tends to the
forecast ensemble if the observation error covariance gets very large (suffix
SST ).



Variants of the scheme (the nasty details)

Ensemble covariance P (n× n) of a ensemble with N members can be written as:

P = SST (2)

where S is of size n×N−1 (scaled difference between ensemble member and ensemble
mean).
Spurious long-range correlations are filtered by a function ρ with compact support:

P′ = ρ ◦P (3)

We want that the analysis increment satisfies an constrain (does not create heat or
salt for example):

hT (xa − xf ) = 0 (4)

Normalize hT so that hTh = 1. Modify covariance for strong constraint:

Pc = (I− hhT )P′(I− hhT ) (5)

Thus the uncertainty in the conserved values hTPch is zero.



Kalman gain based on modified covariance:

K = PcH
T
(
HPcH

T + R
)−1

(6)

The product of K times a vector→ conjugate gradient algorithm (forming explicit
matrices) to solve: (

HPcH
T + R

)
y = yo −Hxf

Possible preconditioning: global scheme
The analysis (ensemble mean):

xa = xf + K(yo −Hxf ) = PcH
Ty (7)

Stochastic analysis scheme

Ensemble xa(k) using perturbed observations:

xa(k) = xf (k)
+ K(yo(k) −Hxf (k)

) (8)

This can already be used in with an realistic ocean model.



Deterministic analysis scheme

Can we get a formulation without perturbed observations?

xa(k) = (I−KH)xf (k)
+ Kyo(k) (9)

The covariance of this matrix is:

Pa = (I−KH)Pf (I−KH)T + KRKT (10)

If we take Pf = SST , thus the unfiltered covariance, we get:

Pa =
[

(I−KH)S KR1/2
]

[idem]T (11)

In general the rank of Pa increases.
We can try to project the term due to uncertain observations on the error space.
Onto which basis can be project Pa ? A good choice seem to be

S′ = (I−KH)S (12)

as hTS′ = 0 if hTS = 0.



eProjection operator:

S′
(
S′TS′

)−1
S′T (13)

Project the covariance matrix Pa onto the subspace defined by S

Pa = S′
(
S′TS′

)−1
Pa

S′

(
S′TS′

)−1
S′T + contrib. in perp. space to be neglected (14)

Pa
S′ = S′TPaS′ = (S′T − S′TKH)Pc(S

′T − S′TKH)T + S′TKRKTS′ (15)

We need to compute the product KTS′ efficiently:

KTS′ =
(
HPcH

T + R
)−1

HPcS
′ (16)

Finally:

Sa = S′
(
S′TS′

)−1
(Pa

S′)1/2 (17)

where (Pa
S′)1/2 is the principal square root of Pa

S′ (which is unique).
This requires to solve 2(N − 1) systems of the size m×m for the error modes and 1
system for the ensemble mean (sounds reasonable). The N systems are independent
and can be distributed on a parallel machine.



Problem: unwanted rotation

Even if R is very large (goes to infinity), the analysis ensemble is different from the
forecast ensemble (mean and covariance are however unchanged) because

Pa
S′ → STPcS (18)

and the principal square root of this matrix introduces an unwanted rotation. However,
we want that this tends to the following:

Pa
S′ → STSSTS (19)

so that the principal square root of Pa
S′ tends to STS (because it is unique) and Sa

will tends to S. This can be achieved by mortifying (15), so that this equations reads:

S′TPaS′ = (S′T − S′TKH)SST (S′T − S′TKH)T + S′TKRKTS′ (20)

= S′T (I−KH)SST (I−KH)TS′ + S′TKRKTS′ (21)

= S′TS′S′TS′ + S′TKRKTS′ (22)

As R→∞ we have:

Sa → S′
(
S′TS′

)−1
STS = S (23)



Test case

Kuramoto-Sivashinsky equation

I Equations:

∂tv = −∂2
xv − ∂4

xv − v∂xv (24)

I Periodic domain: L = 32π with 128 grid points

I Time-step: ∆t = 1/4

I ETDRK4 (Exponential Time Differencing fourth-order Runge-Kutta)

I Conservation:

d

dt

∫ L

0

v dx = 0 (25)



space (x)

ti
m

e
 (

t)

 

 

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 1: Solution of the KS equation (without assimilation)



Localization function

I Localization function from Gaspari and Cohn (1999): compactly supported 5th-
order piecewise rational function:

f(r) =
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I where r is the distance scaled by a given length-scale L.
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Assimilation test cases:

I CL: standard covariance localization: observations are assimilated sequentially
and the correction is multiplied with a localization function.

I CL-adj: The same as CL, but after the analysis the budget is corrected with an
adjustment step.

I LEnKF-pert: Localized EnKF using perturbed observations without conservation
constraint.

I CLEnKF-pert: Localized EnKF using perturbed observations with conservation
constraint.

I LEnKF-Pc: Localized EnKF variant “Pc” without conservation constraint.

I CLEnKF-Pc: Localized EnKF variant “Pc” with conservation constraint.

I LEnKF-SST : Localized EnKF variant “SST” without conservation constraint.

I CLEnKF-SST : Localized EnKF variant “SST” with conservation constraint.



Assimilation setup

I Classical twin experiment.

I Every 8th grid point is observed (with an error variance of 0.1) at every 10 model
time steps.

I The model with assimilation for 1000 time steps.

I The experiment is repeated 800 times and RMS errors relative to the true solution
are averaged.

I Using different localization length-scale and inflation factors.



Results
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Figure 2: RMS error between the model run with assimilation and true solution for
different schemes and localization length-scale (x-axis) and inflation factors (y-axis)



Optimal parameters

RMS L inflation

CL 0.71733 21 1.03
CL adj 0.69039 23 1.03

LEnKF-pert 0.66798 19 1.07
CLEnKF-pert 0.64005 15 1.08

LEnKF Pc 0.63993 25 1.04
CLEnKF Pc 0.61864 25 1.05
LEnKF SST 0.65308 19 1.07

CLEnKF SST 0.63871 21 1.06

Table 1: Lowest RMS for different assimilation schemes and corresponding parameters



Minimal model for sea ice and salinity with conserva-
tion

We look for minimal model for sea ice and salinity where the amount of “freshwater”
(or salt) is conserved. In this system, the integral of a function f (of the model
parameter) over a closed domain remains constant over time:

d

dt

∫
Ω

fdx = 0 (26)

Based on Bert’s ideas, the velocity (v) for salinity (S) is provided using the Kuramoto-
Sivashinsky equation:

∂tv = −∂2
xv − ∂4

xv − v∂xv−g∂xh (27)

The flow v is not “incompressible” as it varies with x. Thus we use also the variable
h, representing the height of the mixed layer:

∂t(hS) + ∂x(vhS) = κ∂2
x(hS) + µF (28)

∂tc+ ∂x((vc + v)c) = F (29)

where vc is the velocity of the sea ice (constant) and h is governed by:



∂th+ ∂x(hv) = 0 (30)

For a periodic domain Ω, salinity fluxes and ice fluxes cancel after integration over the
whole domain and one obtains:

d

dt

∫
Ω

(hS − µc) dx = 0 (31)



Figure 3: Sample model results



Results
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Figure 4: RMS error between the model run with assimilation and true solution for
different schemes and localization length-scale (x-axis) and inflation factors (y-axis)



RMS L inflation

CL 0.17423 17 1.00
CL adj 0.17374 17 1.00

LEnKF-pert 0.17108 17 1.02
CLEnKF-pert 0.16803 17 1.02

LEnKF Pc 0.17895 17 1.02
CLEnKF Pc 0.17670 17 1.02
LEnKF SST 0.16846 17 1.02

CLEnKF SST 0.16545 17 1.02

Table 2: Lowest RMS for different assimilation schemes and corresponding parameters
(for salinity)

I Conservation gives a slight improvement

I Method CLEnKF SST is better than standard CL (covariance localization)



Analysis with sub-optimal gain

I The analysis error covariance for any gain matrix K′ can be written as:

Pa = Pf − KHPf︸ ︷︷ ︸
error reduction

+ (K−K′)(HPHT + R)(K−K′)T︸ ︷︷ ︸
error increase

I The matrix K is the optimal Kalman gain and the matrix K′ is the estimated
Kalman gain.

I The 2nd term is always positive defined and represents an error reduction.

Pr = KHPf

I The 3rd term is always negative defined and represents an error increase (unless
the K′ is the optimal Kalman gain).

Pi = (K−K′)(HPHT + R)(K−K′)T (32)

I In the following we will explain how the matrices K, K′, Pr and Pi are estimated.



Approach

The method similar to bootstrapping in statistics:

1. An ensemble of e.g. N = 100 members is created by perturbed initial conditions,
boundary conditions,...

2. The ensemble is split in 2 sub-ensembles of 50 members (at random)

X′i,j
(m)

= Xi,p(j)(m) 1 ≤ j ≤ N/2

X′′i,j−N/2
(m)

= Xi,p(j)(m) N/2 < j ≤ N

where p(j)(m) is the m-th realization of a permutation vector.

3. The observations are assimilated with the 2 sub-ensembles of 50 members
by calculating the Kalman gain (K′(m) and K′′(m)).

∆x′
(m)

= K′
(m)
(
yo −Hx′f

(m)
)

∆x′′
(m)

= K′′
(m)
(
yo −Hx′′f

(m)
)



We do not have access to the optimal Kalman gain (obtained if N → ∞), but
the Kalman gain error K−K′ of equation (32) can be approximated in average

by K′(m) −K′′(m).

4. The difference between the two analyses increment is computed.

δx(m) = ∆x′
(m) −∆x′′

(m)

The covariance of this difference is thus Pi.

5. Step 2. to 4. are repeated with other 2 sub-ensembles.

6. We check where the analyses are consistent in all tests (variance of the incre-
ment).

z =
1

mmax

mmax∑
m=1

δx(m)2 ∼ diag(Pi)

7. The localization function is built based on the consistency of the analysis
using z and expected error reduction,

fi = exp

(
z2
i

Pr
2
ii

Pf
ii

Prii

)



All terms of this equation are filtered spatially to ensure smooth variations in
space.

8. The analysis increment is multiplied element-by-element with this localization
function

Notes

I The approach is pessimistic since the statistical fluctuations are based on an
ensemble of half the size.

I The approach is optimistic since all realizations of the increment fluctuations use
the same ensemble.



Idealized tests

I 1 dimensional domain with an error
covariance of Pf given by:

Pf
ij = exp(−(i− j)2/L2)

with L = 10

I Ensemble of 100 members are drawn
from a Gaussian distribution with this
covariance

I Observations in the middle of the do-
main is assimilated (yo = R = 1)
using the ensemble error covariance
and analytical error covariance
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Model

I ROMS nested (off-line) in the Mediterranean Ocean Forecasting System

I 1/60 degree resolution and 32 vertical levels

I Atmospheric forcings come from the limited-area model COSMO (hourly at 2.8
km resolution)

I Currents: Western & Eastern Corsican Current, Northern Current, inertial oscil-
lations, mesoscale currents



Model error covariance

I Estimated by ensemble simulation (with 100 members) where the uncertain as-
pects of the model are perturbed

I Perturbed zonal and meridional wind forcing

I Perturbed boundary conditions (elevation, velocity, temperature and salinity)

I Perturbed momentum equation (ε)

du

dt
+ Ω ∧ u = − 1

ρ0

∇hp+
1

ρ0

∇ · Fu

+∇h ∧ ε ez

• where ∇h = ex
∂
∂x

+ ey
∂
∂y

• does not create horizontal convergence or divergence (linked to barotropic
waves)

• can create mesoscale flow structures (absent or misplaced)



Test in realistic domain

I We assume an observation of the u-velocity (at the location of the marker) of
0.1 m/s

I Observational error covariance is R = (0.1 m/s)2



Observations in the interior of the model domain

I Observation located at 8.8250 W and
43.3250 N

I Significant spurious long-range corre-
lation, especially with parts of the do-
main having a large error variance

I The localization function naturally
selects corrections near the location
of the observations.



Observations in a highly variable area

Increment
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I Covariance is more localized at this
location, but spurious corrections are
still present



Conclusions

I New assimilation scheme which is formulated globally (i.e. for the whole state
vector)

• where spurious long-range correlations can be filtered out

• global conservation properties can be enforced and non-local observation
operators can be used

I Test with Kuramoto-Sivashinsky show benefit of this approach compared to the
traditional covariance localization scheme where observations are assimilated se-
quentially (even with an ad-hoc step enforcing conservation)

I But better results are obtained with the new assimilation variants (except Pc
variant for KS-sea-ice)

I Even without conservation the new the new schemes produce a lower RMS errors.

I A method similar to bootstrapping can be used to estimate the uncertainty of
the analysis increment

I The error increase can be compared to the expected error reduction to formulate
a field that can be used as a localization envelope.
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