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Chapter 1

Introduction

The impact of high-frequency radar surface current observations in data assim-
ilative regional ocean models is analyzed in the particular case of an ensemble
of models of the Ligurian Sea. The method for generating the ensemble is ex-
posed, as well as the observation operator linking the data and model vectors.
The impact of the velocity observations is analyzed in space as well as in time.
Their impact on other (non-observed) variables is assessed as well.

A number of recent studies, following the initial paper by Barrick et al (1977,
1978), already presented assimilation of radar currents in models. Let’s mention:

• Lewis et al. [1998] use nudging by adding a pseudo-layer above the surface
and impose a shear stress on top of the one generated by the wind. At the
time, they noted that the radar data accuracy was rather poor.

• Breivik and Saetra [2001]: During the EuroROSE project, they performed
operational data assimilation in a nested model along the Norwegian coast.
Data is discarded when the velocity difference between model and obser-
vations is more than 0.5m/s, or the direction difference is more than 45Â◦.
The analysis is smoothed with a second-order Shapiro filter. Some scatter
plots of the kinetic energy in analysis versus observations (1 plot per lead
time) are presented, including the linear regression line.

• Oke et al. [2002] assimilates high-frequency radar observations off the Ore-
gon coast. The correction is applied in multiple steps

• Kurapov et al. [2003] uses radar data to improve a model (including tides)
off Oregon as well

• Wilkin et al. [2005] assimilates radar data in a ROMS model off the New
Jersey coast

• Kaplan and Lekien [2007] produces smooth two-dimensional fields from
radar-based observations, though noting that assimilation of radial currents
avoids the additional step and errors of creating the vector currents

• Chao et al. [2009] Run a ROMS model nesteed in the Monterey bay. Avail-
able observations include 4 radars with a coverage of about 200km and
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with resolution of 1 to 3km, but this data is used for validation only. The
hourly radar data is filtered with a 33-hour filter to remove tidal currents (di-
urnal and semi-diurnal time-scales). Regarding predictability, they note that
glider velocity rms errors double in 48h, and conclude that it is necessary
to assimilate current data.

• Shulman and Paduan [2009]: In a Monterey bay experiment,
1/ assimilation of low-pass filtered (33 hours) radar data into a non-tidal
model, improves comparison with moored current observations
2/ assimilation of unfiltered radar data into a model with tides yields the
same level of improvement
Thus, unfiltered radar data can be assimilatde as long as the model repre-
sents the observed time-scales too.

• Hoteit et al (2009) use a 4DVar filter to improve initial condition, OBC and
atmospheric forcings

• Barth et al. [2010] use an ensemble Kalman filter to assimilate HFradardata
and correct tides. The ensemble members are perturbed using the WCE
algorithm.

• Zhang et al. [2010] use a 4DVar filter to improve a ROMS model of the New
York Bight Different datasets are assimilated. It is noteworthy that HFradar
data degrades sub-surface temperature.

• Barth et al. [2011] implement an EnKF to correct the wind forcing field;
multiple time instants are grouped in the statevector which is subsequently
called the estimation vector.

• Yu et al. [2012] use a 4DVar filter to assimilate radar data, in order to im-
prove the geometry of the upwelling SST front, and SSH. The wind stress is
not corrected, but the state vector comprising (U,V,SSH,T,S). The error co-
variance is function only of the model-observations misfit. The model error
covariance is diagonal and dependent on distance.

• Gopalakrishnan and Blumberg [2012] nudge HFradar in a 3D estuarine/coastal
model, and show improvement of the model with respect to ADCP data. The
paper contains a nice short history of radar assimilation.

• Supulveda et al. [2013] perform a twin-experiment using a 3DVar filter to
assimilate data off northern Chile.

• Paduan and Washburn [2013] present a review article of radar current data
utilization.

• Kurapov [2014] Assimilates sea surface height, temperature and radar data
in the presence of a river plume

• Mermain et al. [2014] assimilate HFradar around Toulon to correct wind
and open sea boundary conditions; rms errors on radial velocity and sur-
face currents are about 0.2m/s, and improved very slightly; when errors are
larger (around 0.3m/s), the improvement is larger ( 0.1m/s). Assimilation of
radar data brings no significant changes on T-S profiles.
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• Sperrevik et al. [2015] use ROMS-4DVar in an experiment off Norway, as-
similating HF-radar and CTD data. The free simulation has relatively bad
velocities (compared to drifters). Assimilating radar velocities improves the
current field. Assimilating also CTD profiles does not improve surface ve-
locity, but improves the density field.

In general, most authors recommend a 24h window to assimilate radar data. Re-
cent studies usually assimilate directly the radial currents (with respect to the
radar position), or if they assimilate orthogonal currents (i.e. interpolated on the
model grid), they recommend to switch to the original radial currents in the future.

In this report, we assimilate HF radar data in a ROMS model of the Ligurian
Sea.
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Chapter 2

ROMS model in the Ligurian Sea

The hydrodynamic model is the ROMS model with 1/60 degree horizontal reso-
lution and 32 vertical s layers. Open boundary conditions are obtained from the
Mediterranean Forecasting System (MFS). Atmospheric forcing fields are from
the COSMO forecasts. The model is run during the Recognized Environmental
Picture campaign that the took place during summer 2010 (REP’10). The Lig-
urian sea is conditioned by the Liguro-Provencal Current, which is created by the
joined Eastern and Western Corsican Currents. The region is also the siege of
large mesoscale activity; as well as inertial oscillations with a period of approxi-
mately 17 hours.
An ensemble of models is generated by perturbing the open sea boundary con-
ditions and the wind field, and by adding a stochastic term to the momentum
equations represented by the last term in the right-hand side of:

du

dt
+ Ω ∧ u = − 1

ρ0
∇hp+

1

ρ0
∇ · Fu +∇h ∧ εez (2.1)

This does not create horizontal divergences or convergences, and can create
(absent or misplaced) mesoscale features in the flow.
The ensemble is then spun up for 1 week with all the perturbations, in order for
the members to create different mesoscale circulation features. Hence during the
subsequent actual experiment, all members have different initial conditions and
boundary conditions. The model error covariance is subsequently estimated by
the ensemble covariance matrix. For example, after the 1-week spin-up, the en-
semble surface velocity spread is about 10 cm/s. The spatial correlation is about
50km (for temperature) and 10 km (for velocity). The obtained ensemble should
represent the variability at all spatial and temporal scales represented in the sim-
ulation.

During the REP’10 experiment, HF-radar currents, satellite SST images, and
glider data were obtained. Two WERA radars are operated by the NATO Un-
dersea Research Center (NURC, now CMRE) in the Insula Palmaria and San
Rossore location; they provide radial current fields with an azimuthal resolution
of 6 degrees. These are smoothed in the azimuthal direction as a function of
distance to the radar to account for loss of precision at larger distances. We av-
erage the observed currents over 1 hour. Figure 2.1 shows the model domain,
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Figure 2.1: Model domain, and temperature and velocity forecast for 06/07/2010.
The coverage of radar observations is shown as well.

the simulated temperature and velocity on 06/07/2010 and the area covered by
the 2 radars.
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Chapter 3

Assimilation of HF radar
currents

Data assimilation is performed by the Ocean Assimilation Kit (OAK) software im-
plementing the Ensemble Kalman Filter (EnKF). The state vector may contain
different variables at different time steps, in which case it is called the estima-
tion vector. In our setup, during a 2-day window, each member of the ensemble
saves 48 hourly-averaged outputs which are all assembled in the estimation vec-
tor. The filter is then closely related to the Asynchronous Ensemble Kalman Filter
(AEnKF).
The estimation vector may also contain uncertain forcing fields such as the wind
field, the initial condition, the open boundary condition, and the stochastic error
term (at one or more instants).
The model currents are transformed into radial currents by the observation oper-
ator, according to

uHF =
kb

1− exp(−kbh)

∫ 0

−h
u(z) · (e)r exp kbzdz (3.1)

where kb = 2π
λb

, and er is the unit vector poiting in the opposite direction to the
location of the radar. Positive values hence represent currents away from the
system. The operator essentially represents an average over the upper meters.
The points in the dense field of radar velocity observations are not uncorrelated.
However, in the current implementation of the EnKF, the observation error co-
variance matrix R is diagonal. Hence, we strongly increase the ”representativity”
error component in (the diagonal of) R:

R = Rinstrum + Rrepr (3.2)

where Rinstrum is the instrumental (measurement) error and Rrepr needs to be
determined.

In the present tests, the estimation vector x contains the 48 hourly-averaged ra-
dial velocities, and the temperature field at the end of the 2-day window. For
memory-saving reasons, the estimation vector does not contain all the other
model variables. However, the data assimilation procedure saves the local coef-
ficients α of the linear combination of ensemble members (forecasts), point-wise
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Figure 3.1: Succession of model integration, observation operator, data assimi-
lation scheme, and recomposition.

yielding the analysis and the analyzed members.

xa = xf +
∑

αixi (3.3)

Then, the same linear combination can be applied to the other model variables or
forcing fields such as the wind forcing. The procedure is illustrated in Figure 3.1.

The rms error between the free run and the radar observations is shown by
the black curve in Fig. 3.2. Errors are between 10 and 15 cm.s−1 except around
the end of June 2010, when they are over 20 cm.s−1. The data assimilative run
uses 48 hourly-averaged velocity fields to correct the instanteneous ’restart” ve-
locity (which itself is not observed). The corresponding correction is of the same
order of magnitude as the ensemble spread. Root mean square errors are rep-
resented by the dotted blue curve. Errors are reduced by the data assimilation
procedures, but the model tends to increase the errors again. However, they usu-
ally keep smaller than the free run. During the period when the free model errors
were larger, data assimilation managed to significately reduce them.
In order to diminish the tendency that the model has to generate errors, another
experiment with strongly increased values in the observation error variance ma-
trix was carried out; results are shown in the pink curve. Furthermore, other
experiments were carried out, with even larger observation errors, with more lo-
calized corrections, with different time-window lengths (24 instead of 48 hours),
with assimilation of only radar data closer than 50km to the radar, or with correc-
tion only of the model velocity (without updating the model temperature, salinity
and surface elevation). None of these experiments could decrease the rms errors
further (not shown).
Another experiment consisted of also adding the wind forcing in the estimation
vector, and obtaining a “corrected” wind field. In practice, the corrected wind field
is obtained afterwards, during the recomposition step. The model is then run one
more time using the corrected wind. The obtained rms errors are represented
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Figure 3.2: Root mean square difference between model and observation for
different cases.

by the red curve in Fig. 3.2; they are not smaller than by direct correction of the
model fields.

As a further test, we assimilate the 2 radar velocities in a single point, once
per 48-hour window. The correction (also called increment) to hourly-averaged
velocities, obtained at that particular point, is represented by the blue curve in Fig.
3.3. The coefficients of the analyzis change every 48 hours, which explain the
discontinuities. Inside (some of) the 48-hours windows, the corrections present
the typical 17-hour period of the inertial oscillations. The forecast, observation
and analyzis (for the second 48-hour period) are shown in Fig. 3.4. The single
assimilated observation is represented by a red arrow; the other observations are
plot for reference only. One can observe that although a single linear combination
is built for the 48 hours of the assimilation window, the result of the assimilation
is so, that the correction is important mostly during the first 12 hours, i.e. close to
the observation. During this period, the velocity is changed from north-eastward
to south-eastward.
When using 48 hourly-averaged velocities during the 48-hour window, but still
only in 1 single point in space, the corresponding correction is shown by the red
curve in Fig. 3.3. One can see that the inertial oscillation correction is much
stronger. This shows the beneficial impact of having very frequent observations
(i.e. every hour).

During the REP’10 campaign, surface drifters were also launched. However,
rms velocity errors between model and drifters are very large (27 cm.s−1), and
between radar and (projected) drifters as well (25 cm.s−1). This may be due to
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Figure 3.3: Analysis velocity increment when assimilating velocity in a single
point. The blue curve corresponds to the case when assimilating one data-point
per time-window, the red curve to the case when assimilating 48 data-points.

Figure 3.4: Upper panel: model velocity forecast during the 48-hours of the sec-
ond assimilation window. Middle panel: corresponding observations; the assimi-
lated observation is represented in red. Lower panel: model velocity analysis.
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the fact that hourly-averaged model and radar velocities do not correspond to the
mean velocity measured by the drifter between 2 transmissions (usually larger
than 6 hours, i.e. over one third of the inertial oscillation period). It may also be
caused by outliers with huge errors (up to 70 cm.s−1); this is further investigated.
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Chapter 4

Assimilation of radar and
temperature observations

Assimilating radar currents leads to a (small) deterioration of the rms error be-
tween model and observed (satellite) sea surface temperature (SST). The errors
are represented in Fig. 4.1; the blue curve is the free run, whereas the green
curve is the rms SST error when assimilating radar observations. This unfortu-
nate result was also obtained in other, recent studies [Zhang et al., 2010, Sper-
revik et al., 2015]. When assimilating radar velocities and satellite SST, the error
was reduced, as shown by the red curve in Fig. 4.1.
Comparisions of the independent temperature measurements realized by the
drifters, with the “free” model run (i.e. assimilation of radar velocity only) and
the SST-assimilating model are represented respectively by the blue and green
curves in Fig. 4.2. One can observe a reduction of the rms errors in the latter
case.
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Figure 4.1: Rms SST error of the free run (blue curve), the run assimilating radar
velocities (green curve) and the run assimilating both radar and SST observations
(red curve) [C].
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Figure 4.2: RMS temperature error between drifters and model forecasts when
assimilating only radar velocities (blue curve) or when assimilating SST images
as well (green curve).
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Chapter 5

Conclusion

In this report, we analyzed wether radar observations could improve a regional
model of the Ligurian Sea, using an ensemble of ROMS models. The ensemble
is generated by perturbing the open sea boundary conditions and the wind forc-
ing, and by adding a supplementary stochastic term to the momentum equations.
The estimation vector used by the Ensemble Kalman Filter (EnKF) contained mul-
tiple instances of hourly-averaged currents (48 instances in this case), making the
EnKF closely related to the Asynchronous Ensemble Kalman Filter (AEnKF) and
the Ensemble Kalman Smoother (EnKS).
The results showed that the radar data somewhat allow to somewhat reduce the
discrepancy between model velocity and radar observations, particularly when
the model itself departs more strongly from observations. Adding the wind forc-
ing in the estimation vector so as to obtain an analyzed forcing field, did not yield
better results.
The high temporal frequency of observations (hourly, in this case) allows to cor-
rect the inertial oscillations in the model, or at least, modify their phase.
Surface drifter velocities could not be compared to model or radar data, because
they represent an average over a much longer period and/or due to the presence
of outliers.
Assimilation of radar data does not allow to improve model SST; actually model
SST is slightly degraded. However, assimilating both radar velocities and satellite
SST however, allows to improve the model SST. This is confirmed by compar-
isons with drifter temperature measurements.
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