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Chapter 1

Introduction

The purpose of this deliverable is to present the results that have been obtained
with the large case SANGOMA benchmark, focusing on the probabilistic metrics
that have been used to evaluate the results (described in deliverable 4.3) . The
large case benchmark is based on a realistic North Atlantic model at 1/4◦ res-
olution, assimilating real world observation (described in deliverable 4.1); it has
been designed to be complient with MyOcean systems (as close as possible to a
realistic system).

As planned in the SANGOMA proposal, assimilation experiments with the
large case benchmark have been carried out by GHER and CNRS/LGGE. Each
of these works has already been published in scientific journal: in one paper by
Candille et al. (2015) in Ocean Science, and in one paper by Yan et al. (2015)
in the Journal of Geophysical Research. This deliverable is based on the work
described in these two papers, but presents the two assimilation experiments in
the same framework.

As explained below, the two assimilation experiments use the same model
configuration, the same assimilation method (ensemble Kalman filter, with square
root analysis scheme), and applies the same probabilistic metrics to evaluate the
results. The main difference is in the way modelling errors are taken into account
in the assimilation system. In the first experiment (by GHER), modelling error
is simulated by introducing stochastic air-sea forcing perturbations; and in the
second experiment (by CNRS/LGGE), modelling error is simulated by introduc-
ing stochastic perturbations in the equation of state (see chapter 2 below). An
appropriate simulation of modelling error is indeed a key element in ensemble
assimilation systems, which it is often difficult to do correctly.

The plan of the deliverable is as follows: chapter 2 describes the ensem-
ble model system (without assimilation), and a first comparison to observations
(using rank histograms); chapter 3 describes the assimilation experiments; chap-
ter 4 describes the probabilistic metrics that have been obtained; and chapter 5
summarizes the conclusions that have been obtained from this work.
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Chapter 2

Ensemble model system

2.1 Model configuration

The definition of the large case SANGOMA benchmark has been provided in
deliverable 4.1. Here is a short summary of the model configuration.

The large case benchmark is based on a realistic configuration of the NEMO
ocean model, for the North Atlantic Ocean, at a 1/4◦ resolution (Barnier et al,
2006), figuring the operational MyOcean systems. This model was selected be-
cause it has been used in numerous assimilation studies before (Ourmières et
al., 2009, Béal et al, 2010) and because it is based on the NEMO ocean model
which is used by most MyOcean Monitoring and Forecasting Centres.

Physics. The model circulation is simulated by the OPA code using the free
surface formulation. Prognostic variables are the three-dimensional velocity fields
and the thermohaline variables. The model domain covers the North Atlantic
basin from 20◦S to 80◦N and from 98◦W to 23◦E. The horizontal resolution is 1/4
of a degree, which is considered as eddy-permitting in the mid-latitudes where
the Rossby radius of deformation is about 100 km.

Numerics. The primitive equations are discretized on an Arakawa C grid, with
a horizontal resolution of 1/4◦ × 1/4◦ cos(φ). Vertical discretization is done on
45 geopotential levels, with a grid spacing increasing from 6 m at the surface to
250 m at the bottom (with partial step to better discretize the bottom topography).
The model uses a ‘free surface’ formulation, with an additional term in the mo-
mentum equation to damp the faster external gravity waves. Time stepping is
performed with a leap frog scheme, with a time step ∆t = 2400 s

2.2 Ensemble simulations

Two different methods are used to produce the ensemble simulations. In the
first one (GHER), perturbations are introduced in the model using a stochastic
air-sea forcing function; and in the second one (CNRS/LGGE), perturbations are
introduced in the equation of state.

4 Ensemble model system
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Stochastic perturbation of the forcing (GHER) Uncertainties in the system
occur for many different reasons: model dynamics, parameters, forcing, initial
and boundary conditions. Model predictions incorporate error even when forcing
data are perfect due to the choices or limitations in regard to the model physics
and parameters. This includes error associated with assumptions, theory and/or
conceptualisations within the underlying equations, errors due to the computa-
tional grid and its discretisation, numerical errors associated with the time step
or numerical methods used to solve the mathematical equations, and uncertainty
associated with any model parameters adopted. Errors in forcing data are asso-
ciated with the measurement (or prediction) of forcing data and its spatial repre-
sentation.

It is an important task of the assimilation system to make correct assumptions
about the uncertainties. In these experiments, the ensemble is generated by
adding realistic noise in the forcing parameters. For this, the air temperature at
2 m (t2), wind velocities at 10 m (u10, v10), the long wave radiation (radlw) and
short wave radiation (radsw) are considered. The perturbation is obtained by
using the Fourier decomposition of the forcing variable vectors. The details of
the principle is explained in Barth et al. (2011). For a realistic ocean circulation
model, the ensemble should be representative of the impact of forcing errors on
monthly time scale ocean dynamics. The monthly variability is thus taken into
account during the perturbation computation.

The principle is as follows. Let p be the vector of forcing variables of the year
2005:

p(x, y, t) =
∑
k

ak(x, y)exp(iωkt) (2.1)

where ωk is the kth angular frequency and ak(x, y) are complex fields correspond-
ing to the Fourier coefficients of the angular frequency ωk:

ωk =
2πk

∆t
k = −kmax

2
, · · · , kmax

2
− 1 (2.2)

∆t is the time interval of the forcing variables, for example, every 3 hours, and
kmax is the total number of 3-hourly field during the time span of the forcing vari-
ables, here one year.

The perturbation vector pp(x, y, t) is obtained as follows:

pp = αRe(
∑
k

ak(x, y)zk(t)) (2.3)

where zk is a complex random time series with a temporal correlation scale of
Tk = 2π/|ωk|, zero mean and unit variance. The factor α takes into account that
the expected perturbation is in general smaller than the temporal variability.

The construction of the random time series is explained in Evensen (1994).
Usually, we do not take into account all the frequencies, since the variability can
be dominated by only some frequencies or we take interest in only short time vari-
ation, therefore, we combine only the frequencies that we are interested in. For
a realistic ocean circulation model, the ensemble should be representative of the
impact of forcing errors on monthly time scale ocean dynamics. The variability of
one month is thus taken into account for the air temperature and wind velocities.
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The variability of three months is taken into account for the long wave and short
wave radiation.

Moreover, since the air temperature, the wind velocities are correlated. The
same time series are used for these three variables. Regarding the choice of
the factor α, it is determined in order that the perturbation is realistic. In order to
validate the ensemble, the ensemble spread at the end of the ensemble spin up,
is compared to the difference between the model prediction without perturbation
and the observations. Here, α = 1.5 is chosen for the air temperature and the
wind velocities. For the long wave and short wave radiation, 3.0 is taken as α
value.

Figure 2.1: Model/observation difference (left panel) and ensemble spread (right
panel) for SSH at the end of the ensemble spin up.

The ensemble spin up time is 180 days to ensure dynamic stability and to ob-
tain correct multivariate correlations before starting assimilation. At the end of the
ensemble spin up time, the ensemble is diagnosed and validated by comparison
between the ensemble spread and the difference between the model prediction
without perturbation and the observations. for instance, the SSH model/obser-
vation difference (model - observation) at the end of the spinup, as well as the
ensemble spread are shown in Figure 2.1. There is a good spatial consistency
between the model/observation difference and the ensemble spread is observed:
large errors are located in the Gulf Stream region. The RMS error of the model
compared to the obser- vations is 0.097 m, while the ensemble spread is 0.086 m.

Stochastic perturbation of the equation of state (CNRS/LGGE) Before build-
ing a NATL025-based ensemble required for data assimilation, we have to wonder
how to represent the uncertainties in the model, and how to simulate the impacts
of the unresolved small scales on the larger scales circulation. Brankart (2013)
has shown that the unresolved scales in the nonlinear seawater equation of state
represent a major source of uncertainties in the computation of the large scale
horizontal density gradient (from T/S large scale fields), and the impacts of these
uncertainties can be simulated by random processes representing unresolved
T/S fluctuations.

Following these conclusions, the NATL025-based ensemble is built by intro-
ducing stochastic perturbations in the equation of state. In practice, a single non-
perturbed integration is first performed from Levitus (1989) to January 1st 2005 to
reach the regime state of the model. Then a 96-member ensemble of perturbed

6 Ensemble model system
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simulations is run for 6 months with the following stochastic formulation of the
equation of state:

ρ =
1

2
{ρ[T + ∆T, S + ∆S, po(z)] + ρ[T −∆T, S −∆S, po(z)]} (2.4)

where po(z) is the reference pressure depending on the depth and ∆T and ∆S
are a set of T/S perturbations defined as the scalar product of the respective local
T/S gradients with random walks ξ:

∆T = ξ · ∇T and ∆S = ξ · ∇S (2.5)

ξ are produced by a first-order autoregressive process (AR-1) with a 10-day
decorrelation time scale, and horizontal and vertical standard deviations σs equal
to 1.4 and 0.7 grid points respectively. ξ are uncorrelated over the horizontal and
fully correlated along the vertical.

These stochastic parameters are chosen to produce an ensemble spread that
is large enough for our purpose while keeping the model numerically stable. Nev-
ertheless, in order to avoid numerical instabilities, limiting factors are introduced
(1.5 σs) on the perturbations and the time step of the stochastic model is divided
by 4 compared to the time step of the classical model (600s instead of 2400s).
Such an ensemble is thus built to spread mostly over areas with strong gradi-
ents and where the equation of state is strongly nonlinear, for instance in the Gulf
Stream area.

The size of the ensemble (96 members) is chosen in order to satisfy several
factors. Without considering the numerical cost, the larger the size of the ensem-
ble, the more accurate the descriptions of the probability density functions (pdfs)
and the covariance matrices. The ensemble size is then a compromise between
the numerical constraints and the accuracy of the pdfs and covariances matri-
ces associated with the ensemble. Moreover, we also have to take into account
the saturation —depending on the ensemble size— of the probabilistic measures
with which the ensemble is evaluated (Candille et al 2014).

Figure 2.2: 6 members from the free run 96-member ensemble SSH; snapshots
for July 9th 2005.

These perturbations are designed to represent the major part of the uncer-
tainties on the large scale horizontal density gradient. We thus expect an impact
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on the mesoscale circulation that is observable by altimetric data. But we cannot
reasonably expect that these perturbations can simulate all kinds of uncertainties
that significantly influence the thermohaline circulation of the North Atlantic. This
ensemble is designed to allow an effective control of the mesoscale circulation by
altimetric data, not to compensate for any model deficiencies in the description of
the thermohaline strcuture of the ocean.

We now present a qualitative description of the 96-member ensemble running
for 6 months (without any assimilation process). Figure 2.2 shows the variability
of the dynamical fields (SSH) depending on the stochastic perturbations (only 6
members are shown). We can notice that the large scale patterns are similar in
all members, but every member presents different eddy-pattern: as expected, the
largest variability of the ensemble is mostly located around the Gulf Stream front.

2.3 Ensemble validation

We check the reliability of the ensemble simulations using rank histograms (An-
derson, 1996). Let us consider the pdf is described by an ensemble of size N .
For each realisation of the system, the N ensemble members are ranked in in-
creasing order, thereby defining N + 1 intervals (or bins). Then we check the
rank of the verification within these bins: the rank histogram is built by accumula-
tion over all realisations —assumed independent— of the ranks. The ensemble
system is reliable, i.e. the verification is statistically indistinguishable from the
ensemble when it falls with equal probability in each of the N + 1 intervals and
then shows a flat rank histogram. A shape different from the flatness of the rank
histogram characterizes a lack of reliability of the system. For instance, a system
with many outliers, meaning the verification values fall outside the ensembles,
presents a U-shape and is called underdispersive system.

Stochastic perturbation of the forcing (GHER) The rank histogram of SSH
over the Gulf Stream region (Fig. 2.3) confirms the good representativity of the
uncertainty by the ensemble spread. Here, the rank histogram is only computed
in the Gulf Stream region, because the variability among ensemble members is
mainly located in this area. There, the model error represented by the ensemble
spread is considered to be realistic.

Figure 2.3: Rank histogram for SSH in the Gulf Stream region (left panel) and
temperature over the whole basin (right panel) at the end of the ensemble spin-
up.

8 Ensemble model system
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Stochastic perturbation of the equation of state (CNRS/LGGE) In Figure
2.4, the reliability verification of the SSH is performed against the along-track
altimetric observations from JASON during the 10-day cycle from June 29th to
July 9th 2005. The left panel shows the observations rank. Many outliers are
observed, especially in the subtropical gyre. This is mainly due to the very small
spread of the ensemble in this area combined to the model error (ensemble mean
minus observation). Actually, the ensemble spread is so small in this area that the
outliers only reflects the local model error. For the rank histogram construction
(right panel), the statistics are only accumulated over the Gulf Stream verification
area to avoid aggregating heterogeneous data from the frontal region and the
gyre. Graphically, we observe a weak positive bias (asymmetric rank histogram
to the left) and a slight underdispersion. Note that observational error is taken into
account in the rank histogram construction by adding it to the ensemble members
through a white noise (with standard deviation consistent with the observation
error used in the assimilation process, σo = 10cm, see next chapter).

Figure 2.4: SSH JASON tracks, local rank of the observations over 10-day
JASON-cycle from June 29th to July 9th 2005 (left panel) and rank histogram
over the Gulf Stream verification area (right panel).
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Chapter 3

Assimilation experiments

3.1 Setup of the experiments

The assimilation is performed in 2005, during one year. The first 180 days are
ensemble spin up period (see previous chapter). It is indeed important to inte-
grate the ensemble over a time interval covering a few characteristic time scales
of the dynamical system to ensure dynamic stability and to trigger multivariate
correlations before starting the assimilation of observations.

Assimilated observations are not the same in the GHER experiment and in
the CNRS/LGGE experiment.

• On the one hand, in the GHER experiment, 3 types of observations are
assimilated alltogether: JASON1 SSH data, AVHRR SST data and ARGO
temperature profiles.

The assimilation is performed with an assimilation window of 10 days. The
assimilation cycle must be long enough to accumulate sufficient amount of
observations to correct the model state accordingly. The 10-day interval
corresponds to the characteristic time scale of the ARGO data collection.

The IAU scheme is applied instead of the intermittent assimilation in order
to reduce the spurious oscillations produced in the intermittent assimila-
tion by keeping the mass and momentum fields in balance. More precisely,
the IAU scheme is used because of its advantages in reducing the high
frequency analysis-induced oscillations but not increasing the computation
time compared to other IAU assimilation schemes (Yan et al, 2014). In this
scheme, at the end of each assimilation window, the analysis is done us-
ing observations around the analysis time. An increment is calculated from
the difference between the analysed and the forecasted model states. This
increment is then added to the model integration for the subsequent assim-
ilation window. Therefore, the model integration is always forward, there is
no model integration repeat for each assimilation window. Moreover, a time
scale in accordance with the observation decorrelation is applied to the
weighting function of the increment update. A linearly decreasing function
is applied, because the increment is more correlated with the observations
near the current analysis step. The advantage of this linearly decreasing
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weighting function compared to the constant weighting function is shown in
Yan et al., 2014.

In addition, the observations are localised in the analysis to avoid the effect
of spurious long range correlations. The localisation length scale is deter-
mined according to the auto-correlation length of SST and SSH, here 300
km. Then the observations are weighted depending on their distance from
the water column being analysed. The observation weight function is the
Gaussian function with an e-folding scale of the localisation length.

• On the other hand, the CNRS/LGGE experiment focuses on the assimila-
tion of altimetric observations, with the aim of controlling the eddy dynamics
in the Gulf Stream region. The observations are along-track data coming
from two different satellites: 10-day cycle JASON (long inter-tracks) and
35-day cycle ENVISAT (short inter-tracks).

The assimilation cycles are defined to fit with the 10-day cycle of JASON
and are then performed within 10-day assimilation windows [tk, tk+10]. The
update (see details below) is performed at the middle of the assimilation
window tk+5 with all observations and model equivalents —model outputs
projected to the exact observations times and locations— contained in the
10-day assimilation window. Increments are then computed for each en-
semble member as explained below (Ourmières et al 2006).

The increment is then introduced into the model by the Incremental Anal-
ysis Update (IAU) algorithm: a 10-day integration runs from tk by injecting
fractions of the increment step by step all along the assimilation window.
The full increment is thus introduced in the system at the final time tk+10

of the assimilation cycle. The IAU ensemble at the final time of the cycle
provides the initial conditions for the forecast ensemble of the next cycle.
The forecast ensemble trajectories are thus discontinuous from a cycle to
another, while the IAU ensemble trajectories remains continuous (and avoid
possible numerical shocks which would occur if the increments were fully
injected at one single time).

In addition, to avoid the spurious effect of inaccurate long-range correla-
tions the update is also performed with a localisation process: the local
assimilation areas are limited by a radius of 4.5◦ (≈ 450km at 30N) and
the observation influence is defined by Gaussian functions with standard
deviation of 1.5◦ (≈ 150km at 30N).

3.2 Assimilation method

The same assimilation method is used in the two assimilation experiments (by
GHER and CNRS/LGGE), but the implementation is different: GHER uses OAK
(Ocean Assimilation Kit), and CNRS/LGGE uses SESAM (System of Sequential
Assimilation Modules).

The assimilation scheme is a ensemble-based Kalman filter method, using a
square root algortihm to update the ensemble (like in LETKF, Bishop et al 2001).

Metrics obtained with the large case benchmark 11
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Each member i of the forecast ensemble of vector state x is written

xf
i = xf + δxf

i (3.1)

where xf is the ensemble mean and δxf
i the associated anomalies which define

the columns (with factor 1/
√
N − 1) of the forecast square root covariance matrix

Sf (covariance matrix Pf = SfSf T ). Each ensemble member is projected into
the observation space by H so that Hxf is the forecast ensemble mean in ob-
servation space and δ

(
Hxf

i

)
are the associated anomalies defining the columns

(with factor 1/
√
N − 1) of the forecast square root covariance matrix in the obser-

vation space HSf .
The ensemble mean is then updated with a square root algorithm, meaning

that no observation perturbation is needed but requiring to work in the eigenspace
of

Γ = (HSf )TR−1(HSf ) = UΛU−1 (3.2)

where U and Λ are respectively the unitary matrix and the diagonal matrix of the
singular value decomposition of Γ. Note that the observation error covariance
matrix R is diagonal: R = σ2oI. The analysis ensemble mean xa is then updated
as follows

xa = xf + SfU (I + Λ)−1 (HSf )TR−1
(
yo −Hxf

)
(3.3)

xa thus depends on the innovation yo − Hxf , the observation error covariance
R, and the anomalies expressed both in model and observation spaces: δxf

i and
δ
(
Hxf

i

)
.

After that, each ensemble anomaly i can be updated as follows

δxa
i =
√
N − 1

(
SfU (I + Λ)−

1
2 Λ

1
2 UT

)
i

(3.4)

And then, each updated ensemble member xa
i is rebuilt from the updated ensem-

ble mean and its associated updated ensemble anomaly:

xa
i = xa + δxa

i (3.5)

The increments δxi = xa
i − xf

i are then computed and are introduced into the
model by an IAU method in order to continuously update the ensemble and the
covariance matrix. Note that the stochastic version of the model is used for these
assimilation cycles (same as for the free run integration).

12 Assimilation experiments
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Chapter 4

Validation metrics

4.1 Definition of the probabilistic metrics

The definition of the probabilistic metrics used in the SANGOMA benchmarks has
been provided in deliverable 4.3. Here is a short summary of the metrics that are
used in this chapter.

In probabilistic validation, the performance of the ensemble system is diag-
nosed according to reliability and resolution.

To numerically assess the lack of reliability graphically observed on the rank
histogram, we use the Reduced Centered Random Variable (RCRV) as follows.
For each realisation of the system, the RCRV is defined as

y =
o−m
σ

(4.1)

where m and σ are the mean and the standard deviation of the produced pdf
respectively and o the observed value. Note that the observation error σo can be
simply introduced in y by considering σ =

√
σ2ens + σ2o . The system is reliable,

if the mean of y over all the realisation of the probabilistic system is null and its
standard deviation is equal to 1. Thus, the reliability is decomposed into (nor-
malized) bias b = E[y] and dispersion d2 = E[y2] − b2. For the example in Fig.
2.4, the normalized bias and the dispersion from the RCRV are equal to b = −0.1
and d = 1.15 respectively, i.e. the system has a weak positive bias (10%) and
a slight underdispersion (15%). These two diagnoses —the RCRV and the rank
histogram— only measure the reliability of the system. We need to use other
scores evaluating the resolution to get a full probabilistic skill assessment of the
ensemble system.

The Continuous Rank Probability Score (CRPS) measures the global skill of
a probabilistic system by evaluating both reliability and resolution. It is based on
the square difference between the produced Cumulative Distribution Functions
(cdf) of a univariate variable x and the corresponding cdf of the observation:

CRPS = E

[∫
R

(Fp(x)− Fo(x))2 dx

]
(4.2)

where Fp is the cdf associated with the produced pdf, Fo the cdf associated with
the observation (a simple Heaviside distribution when no observation error is con-
sidered), and E [·] is the average of the integrals over all the verification dataset.
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Contrary to the reliability scores presented above, the CRPS has the dimen-
sion of the evaluated variables (for instance expressed in meters for the SSH,
in Kelvin for the temperature, etc...). The CRPS can be decomposed into the
reliability/resolution parts in many different ways. But for practical and numerical
considerations (see Candille and Talagrand 2005), the decomposition described
by H. Hersbach (see details in Hersbach 2000) is chosen:

CRPS = Reli+Resol (4.3)

This decomposition is based on the same principle as the rank histogram con-
struction. These scores are negatively oriented, i.e. the reliability part (Reli) is
null for a reliable system and the resolution part (Resol) s equal to 0 for a perfect
deterministic system.

The goal of the assimilation is to improve the information contained in the
system, i.e. reduction of the probabilistic resolution, by keeping the system as
reliable as possible, i.e. without deteriorating the reliability.

4.2 Results of the experiments

As a first step, we look at the experiments using the classic metrics used in oper-
ational oceanography systems. Probabilistic metrics will be described afterwards
in section 4.3.

Stochastic perturbation of the forcing (GHER) The time evolution of the spa-
tially averaged RMS errors of the forecast/analyses and of the free run with re-
spect to observations of SSH, SST and temperature profiles are shown in Fig-
ure 4.1. For the temperature profiles, the RMS values are calculated by taking
into account the volume represented by the model grid points, since the vertical
grid is not regular.

For SSH, the RMS errors of the analyses are about 4 cm smaller than those
of the forecast at the beginning of the experiment. Towards the end of the ex-
periment, the RMS difference between the analyses and forecasts reach 7 cm.
Note that the RMS errors of the forecasts are very close to those of the free run,
this can be explained by the fact that no SSH increment is updated in the as-
similation experiment, the correction of the SSH in the model state depends on
the interactions between the temperature, the salinity and the SSH during the
model integration. Detailed inspection shows that punctual large residual (0.6 m)
is mainly located in the Gulf Stream region. Off the African coast, residual on the
order of 0.2 m is observed.

For SST, the RMS error of the model prediction is more than 2◦C at the be-
ginning of the experiment. In the free run, the RMS errors increase slightly, then
decrease to 1◦C from the 5th step until the 10th step. Then the RMS errors re-
main stable at about 1◦C until the end of the year. The RMS errors of the forecast
are reduced quickly at the first two analysis steps, then stay stable until the 6th
step. Between the 6th and 10th steps, they decrease to 0.5◦C. After that, the
RMS errors remain stable at about 0.5◦C.

14 Validation metrics
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Figure 4.1: Time evolution of the spatially averaged RMS errors of the free run,
the forecasts and the analyses compared to the observations used in the assim-
ilation experiments for SSH (top left), SST (top right) and temperature profiles
(bottom).

For the temperature profiles, at the beginning of the experiment, the RMS dif-
ferences between the analyses and the forecasts (also the free run) are 0.5◦C.
The RMS errors of the free run and the forecast then increase, which results of a
RMS difference between the analyses and the free run on the order of 0.9◦C and
a RMS difference between the analyses and the forecasts on the order of 0.5◦C.
Detailed insight shows that large residual exists near the surface in the subpolar
area and in depth in the Gulf Stream region. Further investigation confirms the
presence of the instability (density inversion) induced by the model state correc-
tion in the Gulf Stream region, which can explain partly the large residual in depth
in this area.

Stochastic perturbation of the equation of state (CNRS/LGGE) As an illus-
tration of the assimilation process described in the previous chapter, local time
evolutions of the 96-member ensemble is shown in Figure 4.2 for 18 months (6
free run months and 12 assimilation cycle months). As already mentioned, we
observe the saturation of the spread of the free run ensemble (cyan curves) with
different amplitudes and time-saturations depending on the locations. This satu-
ration shows that the local climatological variabilities are reached. The updated
ensembles (blue dots for the forecast ensemble and green curves for the IAU en-
semble) present a noticeable spread reduction and a temporal variability globally
included in the climatological envelop defined by the free run ensemble satura-
tion. This kind of ensemble behaviors could foreshadow an improvement of the
probabilistic resolution without degrading the reliability. We also note the spread
reduction and a slight bias correction with the IAU ensemble compared to the
forecast one.

As a first comparison to the observations, Figure 4.3 shows the time series

Metrics obtained with the large case benchmark 15

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 4.5

Figure 4.2: SSH time series of the ensembles (free run, forecast and IAU) at
locations (A) and (B).

of the ensembles standard deviation averaged over Gulf Stream (left panel) and
Z-focus areas (right panel). We first observe in the figure that the saturation of the
standard deviation is not reached over the global Gulf Stream area contrary to the
Z-focus one. This is mainly due to the fact that the Gulf Stream verification area
contains locations where the perturbations grow very slowly (e.g. near the sub-
tropical gyre). The main point here is the standard deviations reduction observed
with the introduction of the altimetric corrections. This reduction is effective from
the first assimilation cycle. After that, the averaged standard deviations are glob-
ally stabilized by the subsequent assimilation cycles. We also notice the clear
reduction of the standard deviations of the IAU ensembles as compared to the
forecast, meaning the stochastic perturbations are strong enough to produce sig-
nificant spreads within 10 days and thus to avoid the ensemble collapse without
introducing any inflating factor. The 10-day oscillations of the standard deviation
come from the discontinuity of the forecast ensembles.

As mentioned above, the altimetric updates tend to reduce and stabilize the
standard deviation, except the clear increase observed around September 2005
(especially over the large verification area). This results from a lack of observed
data caused by lots of JASON-tracks missings. This circumstantial JASON fail-
ure shows the impact of the satellite coverage on the updated ensembles: this
increases the ensembles standard deviation. That may sound obvious, but this
shows that the accuracy of the correction is very sensitive to the number of avail-
able altimetric data.

16 Validation metrics

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 4.5

Figure 4.3: SSH time series of standard deviations for free run, forecast and IAU
ensembles over the Gulf Stream verification area (left panel) and the Z-focus area
(right panel).

4.3 Probabilistic validation

In this section, the ensemble distributions of the free run, the forecast and the
analysis are diagnosed in a probabilistic way according to two criteria: reliability
and resolution. For each assimilation experiment, the RCRV and CRPS scores
are successively presented.

Stochastic perturbation of the forcing (GHER). The reliability is first inves-
tigated by RCRV score in terms of bias and dispersion. The RCRV scores for
SSH is shown in Figure 4.4. For SSH, the bias of the analysis is closer to 0
compared to that of the forecast and of the free run, but the dispersion of the
analysis is larger than that of forecast (slightly larger than 1), which indicates
slight underestimation of the ensemble error. Towards the end of the assimilation
experiment, the RCRV dispersion for SSH becomes close to 1, which indicates
the improvement of the ensemble performance. For SST (not shown), the bias is
greatly reduced by the analysis, which results of a value very close to 0 during
the whole period of assimilation. The dispersion of the analysis is very close to
1. Therefore, the ensemble system is very reliable for SST with assimilation.

Figure 4.4: SSH bias (left panel) and dispersion (right panel) from RCRV.

For the temperature profiles (fig. 4.5), the bias is reduced by the analysis,
with values close to 0. However, the relatively significant under-dispersion of
ensemble exists from the beginning of the experiment until the 13th analysis step.
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From these analyses, we can see that the slight degradation of reliability with
assimilation for SSH and temperature profile is mainly due to the more or less
significant underestimation of the ensemble spread.

Figure 4.5: Temperature profile bias (left panel) and dispersion (right panel) from
RCRV.

The CRPS and the associated decomposition for SSH are shown in Fig. 4.6.
The CRPS of the analysis is smaller than for the free run and the forecast. In
particular, between the 5th step and the 17th step, the CRPS of the free run and
the forecast increase, but the CRPS of the analysis decreases. However, the
CRPS of the forecast is slightly larger than that of the free run, this can be ex-
plained by the fact that the SSH analysis is not used in the increment update. The
correction of SSH in the model depends only on the model adjustment following
the correction of the temperature and the salinity. Parasitic correction of SSH
can be present during a certain period because of the presence of the gravity
waves. The decomposition of CRPS shows that the assimilation improves the
resolution, but degrades slightly the reliability of the ensemble forecast system.
For the reliability, before the 16th step, the CRPS-Reli of the analysis remains
relatively stable with a small decreasing tendency. While large fluctuation is ob-
served for the CRPS-Reli of the free run and the forecast because of the model
state oscillation, especially at the 10th and 14th steps. At these two steps, the
CRPS-Reli of the forecast is larger than that of the analysis. For the resolution,
the CRPS-Reso of the free run, the forecast and the analysis remain stable with
the assimilation experiment going on. Very small difference exists between the
free run and the forecast, while large difference exists between the analysis and
the free run.

Figure 4.6: SSH: reliability (left panel) and resolution component of the CRPS
compared to the uncertainty (right panel).
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Figure 4.7 shows the CRPS for the temperature profile. Again, the assimi-
lation improves the resolution, but degrades slightly the reliability. Compared to
the uncertainty, the resolution is much smaller, which indicates an informative
ensemble system for the temperature.

Figure 4.7: Temperature profile: reliability (left panel) and resolution component
of the CRPS compared to the uncertainty (right panel).

Stochastic perturbation of the equation of state (CNRS/LGGE). As a first
probability diagnostic, we again investigate the reliability property through the
bias and the dispersion related to the RCRV for SSH. In Figure 4.8, 3 kinds
of curve are shown: dashed curves for verification against JASON data, dot-
ted curves for verification against ENVISAT data and full curves for verification
against both satellites data. Also note that —for all the presented probabilistic
scores in this section— the statistics are accumulated over one month and over
the Gulf Stream area. Remark also, that unlike the forecast ensemble, the IAU
ensemble is checked against observations that have been used to compute the
increments. The data from the ensemble system compared to the observations
are thus no longer independent. In this figure, the forecast ensemble and obser-
vations are the real independent data.

bias dispersion

Figure 4.8: SSH bias (left panel) and dispersion (right panel) from RCRV.

The monthly time series (left panel) show no clear bias reduction compared to
the free run ensemble with altimetric corrections. Nevertheless, the IAU ensem-
ble reduces the bias as compared to the forecast. This is due to the inbreeding
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between the IAU ensembles and the observations in this case. About the dis-
persion (right panel), the underdispersion of the free run ensembles is removed
by the altimetric corrections. The forecast ensemble becomes close to perfectly
dispersive while a slight overdispersion (≈ 85%) remains in the IAU ensemble
(mostly due to the inbreeding with the observations). On the other hand, re-
garding the spread, two results look contradictory at first sight: we observe the
reduction of the spread in the IAU ensembles (Fig. 4.3) and at the same time,
the IAU ensembles overdispersion (Fig. 4.8 right panel). Actually, the spread of
the ensemble is reduced, but also the bias against the observations so that the
dispersion is finally degraded down to an overdispersive system.

CRPS reliability CRPS resolution

Figure 4.9: SSH: reliability (left panel) and resolution component of the CRPS
compared to the uncertainty (right panel).

We now investigate the global CRPS score for the SSH variable. Figure 4.9
shows the reliability (left panel) and the resolution (right panel) components of
the CRPS. The resolution part is compared to the uncertainty associated with
the verification dataset (this represents the climatological variability over the ver-
ification area and period). The reliability of the ensembles is improved by the
altimetric corrections compared to the free run ensemble. Also, the system be-
comes more informative after assimilation processes (better resolution), i.e. the
ensemble system is more accurate in space and time for instance by correctly
translating the eddies along the Gulf Stream front. For both components of the
CRPS, the IAU ensemble performs better than the forecast (these scores are
negatively oriented), partially due to the inbreeding between the IAU ensembles
and the observations.

The resolution curves in Fig. 4.9 (right panel) show that the free run ensemble
has no resolution, i.e. G ≈ 0%. If we only look at the independent verification
data, i.e. the forecast ensemble, the potential gain we get with the assimilation
process is up to 30%. For the SSH variable, the assimilation process leads to an
information gain with a reliability improvement: the uncertainty on the state of the
flow is reduced by 30% and this information is reliable.

20 Validation metrics

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 4.5

Chapter 5

Conclusion

The main originalities of this study are:

1. to explicitly represent uncertainties inherent to the ocean circulation, using
two different approaches: one with perturbations of the forcing (GHER), and
one with perturbations of the equation of state (CNRS/LGGE);

2. to use this as a basis to the implementation of a full 4D-ensemble assimila-
tion system in a realistic configuration, using the same ensemble assimila-
tion method;

3. to validate the results using probabilistic metrics (rank histogram, RCRV
and CRPS scores).

The study shows that both ensembles correctly represent the climatologi-
cal variability of the eddy-dynamics over the Gulf Stream area, especially in the
frontal regions. The ensemble systems (without assimilation) tend to be reliable
—even if globally slightly underdispersive— but provide no useful information (null
probabilistic resolution associated with climatological system) as a result of the
chaotic nature of the eddy flow.

These ensembles are then updated by assimilating observations using the
same full 4D-ensemble assimilation method: covariance matrix propagated by
the ensemble and ensemble anomalies to observations computed at the exact
observation time and location. The updated ensemble systems then become
more reliable —the underdispersion is reduced— and more informative com-
pared to the climatology. The updated ensemble systems are thus probabilis-
tically more skillful.

The experiments presented in this study show promising results in uncertainty
reduction, especially in the way it is diagnosed using probabilistic metrics, but we
are conscious that the two systems are still far from optimal. First, the methods
used to simulate uncertainty in the model are still very specific. Other sources of
uncertainty should be introduced in order to make assimilation more effective ev-
erywhere. Moreover, many parameters could be optimized all along the process.
For instance, the stochastic perturbations amplitudes were only roughly tuned to
produce a reasonable dispersion of the ensemble. The same has been done to
choose the localisation parameters, in order to keep a sufficient dispersion after
the observational update. Despite of our efforts to go to more objective tuning
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and validation of the method, many choices —even if reasonable— are thus still
subjective. This is probably the point where more effort should be put in future
work.

Recommandation to COPERNICUS

As a final conclusion to SANGOMA WP4, we thus strongly recommand to fol-
low the same general route in the development of the Copernicus operational
systems, i. e.

• by making progress in the explicit simulation of model uncertainties using a
stochastic approach;

• by progressively moving to a probabilistic description of the operational
products (using ensemble simulations); and

• by generalizing the use of probabilistic metrics to evaluate the quality of the
products, and their impact on end-user applications.

We believe that this is presently the easiest and most effective way to increase
the quality of the operational products, and to improve the accountability of the
operational system.
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Chapter 6
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