
SANGOMA: Stochastic Assimilation for the Next Generation

Ocean Model Applications

EU FP7 SPACE-2011-1 project 283580

Deliverable 1.5: Documentation of Specifications

Due date: 01/11/2012 Delivery date: 01/11/2012 Delivery type: Report , public

Arnold Heemink, Nils van Velzen, Martin Verlaan, Umer Altaf,

Delft University of Technology, NETHERLANDS

Jean-Marie Beckers, Alexander Barth, University of Liège, BELGIUM

Peter Jan Van Leeuwen, University of Reading, UK

Lars Nerger, Alfred-Wegener-Institute, GERMANY

Pierre Brasseur, Jean-Michel Brankart , CNRS-LEGI, FRANCE

Pierre de Mey, CNRS-LEGOS, FRANCE

Laurent Bertino, NERSC, NORWAY

1. Purpose of this Document

This documents gives an up to date list of software components that are eligible to be

shared in SANGOMA with complete specifications. Each software component is

elaborated and detailed description of the physical interfaces of these software

components is provided. It provides us with a very useful form for describing the

individual tools. This includes the sequence of input / output arguments and their

types. The modules that are mentioned in this document form an initial set for the

initial activities in the SANGOMA project. This document will be updated through out

the project duration with information gathered in the collaboration between the

partners and whenever a new software module will be adopted.

2. POD calibration tool

 Description of functionality/purpose: Variational method for the calibration

of dynamical models. This method does not require an adjoint of the

dynamical model. The method uses an approximated adjoint, that is computed

only using the forward dynamical model. Proper Orthogonal Decomposition

POD or Balanced Proper Orthogonal Decomposition (BPOD) is used for the

approximation.

References:

○ M. U. Altaf, A. W. Heemink, and M. Verlaan, Inverse shallow-water flow

modelling using model reduction, International Journal for Multiscale

Computational Engineering, 7 (2009), pp. 577–596.

○ M. U. Altaf, Model Reduced Variational Data Assimilation for Shallow

Water Flow Models, PhD Thesis. Delft University of Technology (2011).

The method is implemented in three separate steps (functions). The first

two functions are executed to obtain reduced model and the final (main)

program computes the values of cost and gradient vector.

1. Function Name: Compute_POD

 Operation: This function reads an initial ensemble (nens ensemble members)

from Netcdef files of model states and store them to an array of vectors

(nstate, nens) of size nstate. Then the eigenvalue problem is solved using this

array of ensemble. An example of such a Netcdef file is already given in data

model description. Before solving the eigenvalue problem the individual

vectors may be normalized. The outputs of the function are truncated

eigenvalues and eigenvectors.

 Inputs: Netcdef files containing model states (see section 2.2)

 Output: A data file containing truncated eigenvectors and eigenvalues. The

elements of output file are:

P(nstate,nvals) truncated eigenvectors

Evals(nvals) vector containing eigenvalues

2. Function Name: Compute_RM

 Operation: This function first reads truncated eigenvectors and run model

simulations to get model sensitivities with respect to state and parameters.

These sensitivities and eigenvectors are then used to construct reduced

dynamic operators to perform optimization in reduce space. The outputs of this

function are these reduced dynamic operators which are saved to a data file

and then use in the main optimization routine.

 Inputs: A data file containing truncated eigenvectors and eigenvalues.

P(nstate,nvals) truncated eigenvectors

Evals(nvals) vector containing eigenvalues

 Output: A data file containing two arrays of vectors containing information of

model dynamics and model sensitivities in reduced space. The elements of

this file are:

M(nvals, nvals, nstep) array of vectors of type real

M_a(nvals, npars, nstep) array of vectors of type real

3. Function Name: Compute_cost_grad

 Operation: This is the main routine which reads truncated eigenvectors and

reduced dynamic operators and then computes the values of cost function and

gradient vector. The outputs of this module are the values of the cost function

and the gradient vector which are then use by minimization procedure to

obtain optimal parameters. Main variables of this functions and their types are

defined here.

Variable Name Type Description

Nstate Integer Size of state vector

Nens Integer Size of ensemble

Npar Integer Size of parameter

Nvals Integer Size of reduced model

Nobs Integer Size of observation vector

Nstep Integer No. of timesteps

X(nvals) real array Real array containing model state at

particular time instant

Y(nobs) real array Real array containing observations at

particular time instance

H(nobs,nvals) integer array Vector array containing observation to

reduced state mapping

M(nals,nvals) real array Vector array containing model dynamic at

particular time instance

M_a(nvals,npar) real array Vector array containing parameter

sensitivities at particular time instance

Nost Real Value of cost function

grad(npar) real array Real array containing gradient information

 Inputs: Truncated eigenvectors, reduced dynamic operators, observations.

P(nstate,nvals) truncated eigenvectors

Evals(nvals) vector containing eigenvalues

M(nvals, nvals, nstep) array of vectors of type real

 M_a(nvals, npar, nstep) array of vectors of type real

 Output: Value of objective (cost) function and a vector containing gradient

informationThe elements of this file are

cost value of cost function

grad(npars) vector containing gradient information

2.1 Pseudo Code
1) program compute_POD

 read ensemble(nens) // Assumes ensemble already available

 do i = 1 to nens

 read ensemble(i)

 set X(ntate,i) = ensemble(i)

 end do

 Normalize X

 Compute X'X

 Compute EVD(X'X)

 Return P(nstate,nvals)

 Return Evals(nvals)

 end compute_POD

2) program compute_RM

 read P(nstate,nvals)

 read Evals(nvals)

 do i = 1 to nvals

 Linearize state in P direction //requires model runs

 Compute M(i,i,step)

 Compute M_a(i, npar, nstep) // requires model runs

 end do

 Return M(nvals, npar, nstep)

 Return M_a(nvals, npar, nstep)

 end compute_RM

2) program compute_cost_grad

 cost = 0.0d0

 grad(nvals) is zeros

 read P(nstate,nvals)

 read Evals(nvals)

 read M(nvals, npar, nstep)

 read M_a(nvals, npar, nstep)

 do step = 1 to tstep

 forward step to find X(step)

 if observation exists

 cost = cost + (Y(step) – HX(step))^2

 end if

 end do

 do step = nstep-1 to 1

 grad(step) = backward step

 end do

 Return cost

 Return grad

 end compute_cost_grad

2.2 Example of Netcdef file as explained in data

model description:

netcdf MetO-NWS-PHYS-dm-Agg_1338362551845 {

dimensions:
time = 2 ;
depth = 24 ;
lat = 166 ;
lon = 91 ;

variables:
float lon(lon) ;
lon:standard_name = "longitude" ;
lon:units = "degrees_east" ;
lon:long_name = "longitude" ;
lon:nav_model = "Default grid" ;
lon:axis = "X" ;
lon:_CoordinateAxisType = "Lon" ;
lon:valid_min = -1.000214f ;
lon:valid_max = 8.999739f ;
double time(time) ;
time:standard_name = "time" ;
time:units = "seconds since 2011-04-07 00:00:00" ;
time:calendar = "Gregorian" ;
time:long_name = "Validity time" ;
time:data_time = 86400.f ;
time:axis = "T" ;
time:_CoordinateAxisType = "Time" ;
time:valid_min = 36244800. ;
time:valid_max = 36331200. ;

 short vosaline(time, depth, lat, lon) ;

vosaline:_CoordinateAxes = "time depth lat lon " ;
vosaline:_FillValue = -32768s ;
vosaline:missing_value = -32768s ;
vosaline:scale_factor = 0.001f ;
vosaline:add_offset = 30.f ;
vosaline:standard_name = "sea_water_salinity" ;
vosaline:long_name = "Sea Water Salinity" ;
vosaline:units = "1e-3" ;
float lat(lat) ;
lat:standard_name = "latitude" ;
lat:units = "degrees_north" ;
lat:long_name = "latitude" ;
lat:nav_model = "Default grid" ;
lat:axis = "Y" ;
lat:_CoordinateAxisType = "Lat" ;
lat:valid_min = 49.00001f ;
lat:valid_max = 60.00001f ;
float depth(depth) ;
depth:axis = "Z" ;
depth:standard_name = "depth" ;

depth:units = "m" ;
depth:positive = "down" ;
depth:long_name = "depth" ;
depth:_CoordinateAxisType = "Height" ;
depth:_CoordinateZisPositive = "down" ;
depth:valid_min = 0.f ;
depth:valid_max = 5000.f ;

// global attributes:
:title = "North West European Shelf from UK Met Office Model FOAM 7 km" ;
:institution = "UK Met Office" ;
:references = "http://www.ncof.co.uk" ;
:source = "UK Met Office Operational Suite, FOAM 7 km run 2012-05-29" ;
:Conventions = "CF-1.0" ;
:history = "Data extracted from dataset http://data.ncof.co.uk/..." ;
:time_min = 36244800. ;
:time_max = 36331200. ;
:julian_day_unit = "seconds since 2011-04-07 00:00:00" ;
:z_min = 0. ;
:z_max = 5000. ;
:latitude_min = 49.0000076293945 ;
:latitude_max = 60.0000114440918 ;
:longitude_min = -1.00021362304688 ;
:longitude_max = 8.9997386932373 ;
}

3. Sangoma_ComputeHistogram

 Description of functionality/purpose: This routine increments information on

an ensemble rank histogram. Inputs are the ensemble array and a state vector

about which the histogram is computed. In addition, the index of the element

has to be specified for which the histogram is computed. If this is 0, the

histogram information is collected over all elements. The input/output array

’hist’ has to be allocated externally. In addition, it has to be initialized with

zeros before the first call.

 Operation: Input and output is performed in memory via the calling interface
of the subroutine.

 Interface: The calling interface is defined as follows:

SUBROUTINE sangoma_ComputeHistogram(dim, dim_ens, element, &

 state, ens, hist, status)

Arguments:

INTEGER, INTENT(in) :: dim ! State dimension

INTEGER, INTENT(in) :: dim_ens ! Ensemble size

INTEGER, INTENT(in) :: element ! Element of vector for histogram

! If element=0, all elements are

!used

REAL, INTENT(in) :: state(dim) ! State vector

REAL, INTENT(in) :: ens(dim, dim_ens) ! State ensemble

INTEGER, INTENT(inout) :: hist(dim_ens+1) ! Histogram about state

INTEGER, INTENT(out) :: status ! Status flag (0=success)

4. Sangoma_ ComputeEnsStats

 Description of functionality/purpose: This routine computes the higher-

order ensemble statistics (skewness and kurtosis). Inputes are the ensemble

array and the state vector about which the histogram is computed (usually the

ensemble mean). In addition, the index of the element has to be specified for

which the statistics are computed. If this is 0, the mean statistics over all

elements are computed. The definition used for kurtosis follows that used by

Lawson and Hansen, Mon. Wea. Rev. 132 (2004) 1966.

 Operation: Input and output is performed in memory via the calling interface
of the subroutine.

 Interface: The calling interface is defined as follows:

SUBROUTINE sangoma_ComputeEnsStats(dim, dim_ens, element, &

 state, ens, skewness, kurtosis, status)

Arguments:

INTEGER, INTENT(in) :: dim ! PE-local state dimension

INTEGER, INTENT(in) :: dim_ens ! Ensemble size

INTEGER, INTENT(in) :: element ! ID of element to be used

 ! If element=0, mean values over all elements are computed

REAL, INTENT(in) :: state(dim) ! State vector

REAL, INTENT(in) :: ens(dim, dim_ens) ! State ensemble

REAL, INTENT(out) :: skewness ! Skewness of ensemble

REAL, INTENT(out) :: kurtosis ! Kurtosis of ensemble

INTEGER, INTENT(out) :: status ! Status flag (0=success)

5. Sangoma_ MVNormalize

 Description of functionality/purpose: This routine performs multivariate

normalization and re-scaling. It has two modes:

mode=1: In this case, the routine computes the standard deviation of a field
inside the array ’states’ holding in each column a state vector. The standard
de viation is computed over all columns if the state vector array. Then, the
field is normalized for unit standard deviation by deviding the values by the
standard de- viation. The standard deviation is provided on output together
with the scaled array ’states’

mode=2: In this case the input variable ’stddev’ is used to rescale the cor-
responding part of the array ’states’. Usually ’stddev’ is obtained by a call with
mode=1 before.

 Operation: Input and output is performed in memory via the calling interface

of the subroutine.

 Interface: The calling interface is defined as follows:

SUBROUTINE sangoma_MVNormalize(mode, dim_state, dim_field, &

 offset, ncol, states, stddev, status)

Arguments:

INTEGER, INTENT(in) :: mode ! Mode: (1) normalize, (2) re-scale

INTEGER, INTENT(in) :: dim_state ! Dimension of state vector

INTEGER, INTENT(in) :: dim_field ! Dimension of field in state vec-

tor

INTEGER, INTENT(in) :: offset ! Offset of field in state vector

INTEGER, intent(in) :: ncol ! Number of columns in array states

REAL, INTENT(inout) :: states(dim_state, ncol) ! State vector array

REAL, INTENT(inout) :: stddev ! Standard deviation of field

 ! stddev is output for mode=1 and input for mode=2

INTEGER, INTENT(out) :: status ! Status flag (0=success)

6. Sangoma_EOFCovar

 Description of functionality/purpose: This routine performs an EOF

analysis by singular value decomposition. It is used to prepare a covariance

matrix for initializing an ensemble. For the decom- position a multivariate

scaling can be performed by ’sangoma_MVNormalize’ to ensure that all fields

in the state vectors have unit variance. To use this routine, one has to initialize

the array ’states’ hondling in each column a perturbation vector (state - mean)

from a state trajectory. Outputs are the arrays of singular values (svals) and

left singular vectors (svec). The singular values are scaled by sqrt(1/(nstates-

1)). With this, svec ∗ svals2 ∗ svecT is the covariance matrix. In addition, the

standard deviation of the fields variance (rms) is an output array. To use the

multivariate normalization one has to define the number of different fields in

the state (nfields), the dimension of each fields and the offset of field from the

start of each state vector.

 Operation: Input and output is performed in memory via the calling interface

of the subroutine.

 Interface: The calling interface is defined as follows:

SUBROUTINE sangoma_EOFCovar(dim_state, nstates, nfields, &

 dim_fields, offsets, do_mv, states, rms, svals, svec,

status)

Arguments:

INTEGER, INTENT(in) :: dim_state ! Dimension of state vector

INTEGER, INTENT(in) :: nstates ! Number of state vectors

INTEGER, INTENT(in) :: nfields ! Number of fields in state vector

INTEGER, INTENT(in) :: dim_fields(nfields) ! Size of each field

INTEGER, INTENT(in) :: offsets(nfields) ! Start position of each

field

INTEGER, INTENT(in) :: do_mv ! 1: Do multivariate scaling

 ! nfields, dim_fields and offsets are only used if do_mv=1

REAL, INTENT(in) :: states(dim_state, nstates) ! State perturba-

tions

REAL, INTENT(out) :: rms(nfields) ! Standard deviation of field

 ! Without multivariate scaling (do_mv=0), it is rms = 1.0

REAL, INTENT(out) :: svals(nstates) ! Scaled singular values

REAL, INTENT(out) :: svec(dim_state, nstates) ! Singular vectors

7. Weakly Constrained Ensembles (WCE)

 Description of functionality/purpose: This ls a Matlab / Octave package.

The interface of the package might change in the future. This package creates

ensemble perturbations that have to satisfy an a priori linear constraint. It can

also be used to create perturbations that are aware of the land-sea mask or

that use space (or time-) dependent correlation length.

References:

○ A. Barth, A. Alvera-Azcárate, J.-M. Beckers, R. H. Weisberg, L.

Vandenbulcke, F. Lenartz, and M. Rixen. Dynamically constrained

ensemble perturbations - application to tides on the West Florida Shelf.

Ocean Science, 5(3):259–270, 2009. doi: 10.5194/os-5-259-2009.

○ A. Barth, A. Alvera-Azcárate, K.-W. Gurgel, J. Staneva, A. Port, J.-M.

Beckers, and E. V. Stanev. Ensemble perturbation smoother for

optimizing tidal boundary conditions by assimilation of High-Frequency

radar surface currents - application to the German Bight. Ocean

Science, 6(1):161–178, 2010. doi: 10.5194/os-6-161-2010.

1. Function Name: wce_simple

 Operation: Generate ensemble perturbations taking into account: the land-

sea mask, correlation length (possibly varying in space) and possibly a vector

field (advection constraint). This function works in an arbitrary high

dimensional space on an orthogonal curvilinear grid characterized by the

metric scale factors.

 Inputs:

mask Land-sea mask (true: sea and false: land). This array has

n dimensions. truncated eigenvectors

pmn

len

Cell array of n arrays (each n-dimensional). The arrays

are the metric scale factors for the different dimensions

(units are (length-scale)^(-1)).

Correlation length. It can be a scalar if the correlation

length is constant and the same in all dimensions or a

cell array of n arrays. In the later case each array has to

be n-dimensional (units are length-scale).

nens

k

velocity

(opt)

Number of ensemble members to generate.

Number of eigenvector and eigenvalues.

Vector field for the advection constraint (units: length-

scale). This vector field can be scaled such that the

alignment of the perturbation is satisfactory. The array

velocity has the same size as mask.

 Outputs:

ep Perturbations (same size as mask plus the trailing

ensemble dimension).

info

info.sv

info.WU

info.lambda

info.WE

Structure with some intermediate results:

Structure describing the concatenated state vector.

Eigenvectors. Use info.sv and statevector_unpack to

extract the individual variables from WU.

Eigenvalues

Weighting matrix related to the total energy. x' * WE * x is
the total barotropic energy of the vector x.

Note

The unit "length-scale" can be for example meters or arc degrees. The choice of the

unit must be consistent for all parameters.

2. Function Name: wce_tides

 Operation: Generate ensemble perturbations constrained by the harmonic

shallow water equations as a weak constrain. It can be used to create

perturbations for tidal parameters.

 Inputs:

h Bathymetry (in m, two-dimensional array, positive in

water and NaN on land).

pm

pn

g

f

len

Inverse of the local resolution in the first dimension (in

m^-1, same size as h).

Inverse of the local resolution in the second dimension (in

m^-1, same size as h).

Acceleration due to gravity (scalar, m/s^2).

Coriolis frequency (scalar, 1/s)

Correlation length (scalar, in m).

alpha actor penalizing the total energy (adimensional).

omega

Angular frequency (rad/s).

k

Number of eigenvector and eigenvalues.

nens

Number of ensemble members to generate.

cdrag_u

(opt)

Linear drag in the u- and v-momentum equation (no drag

is assumed if they are omitted).

cdrag_v

(opt)

Linear drag in the u- and v-momentum equation (no drag

is assumed if they are omitted).

 Outputs:

ezeta, eu,

ev

Perturbation for elevation (in m), u and v (depth averaged

velocity in m/s). The shape of these arrays is the same as

mask.

info

info.sv

info.WU

info.lambda

info.WE

Structure with some intermediate results:

Structure describing the concatenated state vector.

Eigenvectors. Use info.sv and statevector_unpack to

extract the individual variables from WU.

Eigenvalues

Weighting matrix related to the total energy. x' * WE * x is

the total barotropic energy of the vector x.

3. Function Name: statevector_init

 Operation: Initialize structure for packing and unpacking multiple

variables given their corresponding land-sea mask.

 Inputs:

mask1,

mask2, …

Land-sea mask for variable 1,2,... Sea grid points

correspond to one and land grid points to zero. Every

mask can have a different shape.

 Output:

s structure to be used with statevector_pack and

statevector_unpack.

4. Function Name: statevector_pack

 Operation: Pack the different variables var1, var2, ... into the vector x.

Only sea grid points are retained.

 Inputs:

s Structure generated by statevector_init

.

var1,

var2,…

Variables to pack (with the same shape as the

corresponding masks).

 Output:

x Vector of packed elements. The size of this vector is

number of elements of all masks equal to 1.

Note

If var1, var2, ... have an additional trailing dimension, then this dimension is assumed

to represent the different ensemble members. In this case x is a matrix and its last

dimension is the number.

5. Function Name: statevector_unpack

 Operation: Unpack the vector x into the different variables var1, var2,

...

 Inputs:

x Vector of packed elements. The size of this vector is

number of elements of all masks equal to 1.

s

Structure generated by statevector_init.

fillvalue

(opt)

The value to fill in var1, var2,... where the masks

correspond to a land grid point. The default is zero.

 Outputs:

var1,

var2,…

Unpacked variables.

Note

If x is a matrix, then the second dimension is assumed to represent the different

ensemble members. In this case, var1, var2, ... have also an additional trailing

dimension.

8. Empirical Gaussian Anamorphosis (Anam)

 Description of functionality/purpose: This ls a Matlab / Octave package.

The interface of the package might change in the future. This package

determines the empirical transformation function such that a transformed

variable should follow a Gaussian distribution.

1. Function Name: anam_setup

 Operation: Determine the empirical transformation function (empirical

Gaussian anamorphosis). The transformed data

(anam_transform(anam,x)) should follow approximately a Gaussian

distribution. The transformation function is a piece-wise linear function.

 Inputs:

x A data sample (vector).

‘addnoise’,

addnoise

Add Guasssian noise level to the data sample.

‘method’,

method

(opt)

Method can be either direct (i.e. the data sample is

mapped directly to Gaussian distributed variable) or

'by_uniform' (i.e. an analytical transformation is first

applied to bring the data sample to a bounded interval).

‘N’, N

Number of segments of the piece-wise linear function.

k

Number of eigenvector and eigenvalues.

 Output:

anam a structure describing the transformation used in

anam_transform and anam_inv t .

2. Function Name: anam_transform

 Operation: Transform the data x according to the transformation anam.

 Inputs:

anam transform (created by anam_setup).

x

Original data.

 Output:

y Transformed data.

3. Function Name: anam_invtransform

 Operation: Apply inverse transformation to y according to the

transformation anam.

 Inputs:

anam transform (created by anam_setup).

y

Transformed data.

 Output:

x Data in original scale.

9. hfradar_extractf

 Description of functionality/purpose: This ls a Matlab / Octave package.

The interface of the package might change in the future. Observation operator

for HF radar surface currents

1. Function Name: hfradar_extractf

 Operation: Extract the model equivalent of HF radar surface currents.

The currents u and v are specified on an Arakawa-C grid.

 Inputs:

x Domain structure describing the model domain

with the following fields:

domain.lon_u,

domain.lon_v

Longitude of model grid at u/v points (degrees

east).

domain.lat_u,

domain.lat_v

Latitude of model grid at u/v points (degrees

north).

domain.z_u,

domain.z_v

Depth of model grid at u/v points (negative in

water).

site

site.nu

site.res

site.ion0, site.lat0

site.lon, site.lat

site.grid.lon,

Structure describing the hf radar site with the

following fields:

The frequency of the HF radar system in Hz.

The effective azimuthal resolution in degrees.

Longitude and latitude of the HF radar system.

Radial grid of the HF radar data. The first

dimension is the radial dimension and the

second is the azimuth.

Cartesian grid of the HF radar data. The first

site.grid.lat

Dimension is longitude, and the second is the

latitude.

u, v u- and v-velocity of the model currents on

Arakawa-C grid. The order of the dimensions is

longitude, latitude and depth.

 Output:

velg Radial velocity on a Cartesian grid.

velf Radial velocity on a radial grid.

Note

The sizes of the variable on u- and v-grid are related by size(u,1) + 1 == size(v,1) and

size(u,2) == size(v,2) + 1

