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Chapter 1

Introduction

This document specifies the data model that will be used for the implementa-
tion of SANGOMA tools. The data model is initial specified as a logical data
model. However, also some considerations of the physical realization are de-
scribed in this document. The data model bases on the data models that are
already present in the different assimilation systems used within the SANGOMA
consortium. In addition, the data models of the MyOcean initiative are taken into
account. The data model bears in mind that implementations in Fortran, Mat-
lab/Octave as well as in C and Java must be possible, while for SANGOMA the
coding will be in Fortan and Matlab/Octave. In addition, the interoperability of the
tools implemented in Fortran with the other programming languages is ensured.
The data model then aims at efficiency in terms of memory use and accessibility.

The physical realization will consider the realization of the data model in the
different programming languages as well as in NetCDF, which is used as a stan-
dard file format within SANGOMA.

The data assimilation systems used by the members of the SANGOMA con-
sortium, show clear variations in the data model. They range from an abstract
object-oriented data model in which data is only indirectly accesses via functions
(“methods”), over Fortran interfaces using derived data types and assumed shape
arrays, to rather basic interfaces relying only on arrays and scalar variables. The
discussions during the preparation of the SANGOMA data model showed that a
data model using basic data types should be preferred for the tools developed
within SANGOMA. In combination with the C-binding of Fortran2003, this data
model ensures the interoperability with other programming languages like C. In
addition, the Fortran programmers, who build the majority in SANGOMA can base
on a typical implementation style of Fortran. An alternative would have been an
abstract data model. This, however, would have been untypical for the Fortran
codes. Also, it would have been more difficult to ensure efficiency of the memory
usage and numerical calculations.

The data model was discussed within the consortium in a virtual meeting on
May 8, 2012.
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Chapter 2

Data models of data assimilation
systems

2.1 PDAF

The Parallel Data Assimilation Framework – PDAF – is a computational frame-
work for ensemble data assimilation. PDAF simplifies the implementation of the
data assimilation system with existing numerical models. With this, users can
obtain a data assimilation system with less work and can focus on applying data
assimilation. PDAF aims at large-scale problems and is optimized for optimal
compute performance and memory usage. PDAF is naturally parallel and is im-
plemented with the Message Passing Interface (MPI) standard. Computation
without MPI is possible using a stub-implementation of MPI. PDAF provides a
selection of common filter algorithms that are optimized and parallelized.

The data model followed in PDAF is particularly simple to enable one the
easy connectivity to numerical models. To extend a model with PDAF to a data
assimilation system, only a few subroutine calls have to be added. In addition,
the feature of parallel ensemble integrations is also provided for serial (i.e. non-
parallelized) model.

The core part of PDAF contains the analysis step for the different filter algo-
rithms implemented in PDAF. The core of PDAF is independent of the numerical
model and also independent from the observations. The computations performed
in the analysis step are mainly linear algebra operation. Accordingly, PDAF oper-
ates entirely on vectors and matrices, which are implemented as Fortran arrays.

2.1.1 Basic dimensions and arrays

The following dimensions are considered in PDAF. All are implemented as vari-
ables of type INTEGER:

1. size of state vector (dim)

2. size of observation vector (dim_obs)

3. size of ensemble (dim_ens)

The common arrays of the analysis step are:

6 Data models of data assimilation systems
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1. state vector (state(dim))

2. ensemble matrix (ens(dim, dim_ens))

3. observation vector (obs(dim_obs))

Next to these arrays, serveral additional arrays are temporarily allocated during
the analysis step. These additional arrays are only used within the routines con-
taining the implementation of the analysis step.

The parallelization of PDAF assumes domain-decomposition. That is, a state
vector is distributed over several processes as sub-states. Analogously, the en-
semble matrix is distributed, such that each process holds a full ensemble of
sub-states. (An alternative mode-decomposed variant of PDAF exists, but does
not contain all features of the released domain-decomposed variant.)

2.1.2 Connecting model and PDAF

PDAF implements the assimilation system by connecting PDAF and the model
into a single executable. The data transfer between PDAF and the model is per-
formed in memory using call-back routines. These are subroutines, that are im-
plemented by the user and called by routines of PDAF. Required are 2 routines:

1. get_state – This routine initializes model fields from an ensemble state
vector provided by PDAF. This routine is called before the forecast of the
model state is conducted.

2. put_state – This routine initializes an ensemble state vector from PDAF by
model fields at the end of a forecast.

The model integration (forecast) is controlled by an additional call-back rou-
tine:

1. next_observation – This routine determines the number of time steps for
the integration of the ensemble of model states. In addition, the model time
at the beginning of the forecast is set. Finally, a flag is initialized, which
provides the information whether further integrations have to be performed,
or the integration part of the data assimilation system should be exited.

Before and after the analysis step, a call-back routine is called in which PDAF
provides the full ensemble of model states:

1. prepoststep – This routine allows the user to access the full ensemble.
Commonly, it is used to compute the ensemble mean or variances. In addi-
tion, fields can be written into files.

2.1.3 Handling of observations

Obervations are also treated in user-supplied call-back routines. For global filters,
the following routines are used:

1. init_dim_obs – This routine is called to initialize the number of available
observations at the model time of the call
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2. init_obs – This routine is called with PDAF providing the array for the vec-
tor of observations. The routine has to initialize the vector with the actual
values of the observations.

3. obs_ob – This routine has to provide the implementation of the observation
operator. The routine is provided with a state vector and has to return the
observed part of it. As the observation operator is implemented in a func-
tional way, any form of observation operator, including a non-linear one, is
possible.

The handling of the observation error covariance matrix depends on the cho-
sen filter algorithm:

1. SEIK/ETKF/SEEK/ESTKF
prodRinvA – This routine is provided with some matrix A and has to return
the product of the inverse of the observation error covariance matrix with the
matrix A. This operation occurs in all of the ensemble square-root filters.

2. EnKF
add_obs_error – For the EnKF, this routines has to add the observation
error covariance matrix to some matrix. This operation only occurs in the
EnKF.

The implementation of these routines is up to the user. As they are imple-
mented in a problem-specific way, one can ensure optimal performance of the
routines. For the filters involving localization, additional routines have to be im-
plemented, that perform the localization of data for a local analysis domain.

2.2 OpenDA

OpenDA is an open interface standard for (and free implementation of) a set of
tools to quickly implement data-assimilation and calibration for arbitrary numerical
models. OpenDA wants to stimulate the use of data-assimilation and calibration
by lowering the implementation costs and enhancing the exchange of software
among researchers and endusers. As a generic toolbox for data assimilation,
OpenDA provides a set of interfaces that define interactions between compo-
nents. In addition, a library of data-assimilation algorithms is provided. The de-
sign goals of OpenDA are to provide shared tools to reduce implementation costs
and to provide shared knowledge between different applications. Also it enables
the development of algorithms, e.g. by universities. Since the algorithms are
completely independent of the model, they are easier to test, which should result
in fewer bugs. Applications with OpenDA are configurable without recompiling.
OpenDA is portable to common platforms (Windows, MacOS, Linux) and aims at
“good” performance.

OpenDA bases on object oriented concepts, e.g. there is no direct access to
data like Fortran arrays. Instead functions are used for all kinds of operations.
The main objects in OpenDA are:

1. treeVector

8 Data models of data assimilation systems
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Figure 2.1: Graphical representation of a treeVector. The leafs of the treeVector
contain the values. The treeVector of this example represents the state of a
stochastic model. The state of this model is at the highest level a concatenation
of a deterministic model with a (wind) noise model. The state of the deterministic
model on its turn consists of three arrays containing the water level, and two
velocity components. Note that the representation of the actual values can be
completely different. In this example, the state of the deterministic model could
stored in three Fortran arrays and the state of wind noise model in a java array.

2. stochasticModel

3. stochasticObservations

4. data assmilation/calibration method

The object oriented approach shields the exact data representation which is e.g.
in-memory, files or scattered over various computers from the data assimilation.
This is a fundamental design choice in OpenDA, which allows various kinds of
models and observation sources to be use in combination with a single imple-
mentation of a data assimilation or calibration algorithm. The main objects of
OpenDA will be briefly discussed in the following sections.

2.2.1 treeVector

The treeVector in OpenDA is a representation of a mathematical vector with some
additional properties. A treeVector can be defined as a concatenation of other
treeVectors called sub-treeVectors in this context. This allows us to group scat-
tered values, possibly with a different representation in a single entity. These
sub treeVectors have an unique name/tag that allows direct access /usage of sub
treeVectors without any knowledge on length or composition of the other sub-
treeVectors. A treeVector is graphically presented in Figure 2.1. The necessary
mathematical operations on and between treeVectors like dot-producs, scaling,
addition are performed by invocating methods (calling functions) no direct access
to the values is necessary.
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Figure 2.2: Graphical representation of a stochastic model including a smoother.
The composite model is built from a number sub models. These models have
no knowledge on each other’s internals. The treeVector representing the state
vector of this model is shown as well.

Additional meta information like units and grids can be added to treeVectors
at all levels. This allows some basic automatic interpolation of values and the use
of generic plotting/post processing utilities.

2.2.2 stochastic model

The formal form of a model in OpenDA is

dx(t)

dt
= M (x(t), u(t), p, w(t)) (2.1)

Where x(t) denotes the model state at time t, u(t) the time dependent forcings,
p the time independent parameters and w(t) the noise. x, u, p and w cannot be
accessed directly. The values can be manipulated using a set of functions (the
interface of the stochastic model).

Composite models (see Figure 2.2) can be build in a similar fashion as the
treeVectors in OpenDA. The models that together form a composite model have
no knowledge of each other’s data representation. All interaction between the
model is realized by using the methods from the model interface (calling func-
tions).

2.2.3 stochastic observations

The stochasticObserver is the component in OpenDA that contains observations.
In addition to the measured values, a stochasticObserver contains meta informa-
tion on the observations such as location, quantity, interpolation kernel and the
error model.

A stochasticObserver has some similarities with a relational database and
information can be retrieved in the form of (tree)Vectors using enquire methods.
It is possible to create a new stochasticObserver instance containing a sub-set of
observations based on all kinds of properties like time, quantity location etc. The
other way around, it is possible to combine multiple stochasticObservers into a
single stochasticObserver (used by the data assimilation method). In this way we
have a simple way to combine observations from different sources.

The optional addition of noise, according to the error model of the observation
is performed by the stochasticObserver as well on request.

10 Data models of data assimilation systems
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The interpolation of the model state to the observed values is considered to be
very model dependent. Therefore it is not part of the stochasticObserver but part
of the stochasticModel. For this purpose, it is possible to extract the necessary
meta information on the observations. This meta information is then available in
a component called ObservationDescriptions. This component is used as input
to the state interpolation method of the stochasticModel.

2.2.4 data assimilation/calibration method

Data assimilation and model calibration methods are developed in a model inde-
pendent way. In general, a data assimilation method is built using methods of
the treeVector, stochasticModel and the stochasticObserver. Parallel computing
is not explicitly programmed in the data assimilation method but is hidden in the
implementations of the stochasticModel (and in the future treeVector).

2.3 Beluga/Sequoia

SEQUOIA (Sequential Optimization, Initialization and Analysis) is a modular as-
similation system builder developed by LEGOS and disseminated via the SIROCCO
French coastal ocean modeling national service. BELUGA is an analysis kernel
of SEQUOIA that provides a 4D/local ensemble Kalman filter scheme. SEQUOIA
has been used both in research and for operational forecasting. It has been used
extensively within European projects (MERSEA, MFS, ECOOP, MyOcean, GO-
CEAN) and operational or industrial partnerships. In addition, as an implementa-
tion by today’s standards (Fortran95, modularity, etc..), SEQUOIA adapts equally
well to structured grids (finite difference) as to finite elements / finite volume via a
system of generalized grid. Its standardized interface with the numerical model al-
lows it to control virtually any model. Currently, SYMPHONIE, MOG2D/T-UGOm,
and POLCOMS are interfaced, and other models are considered. The code also
manages all of the simulation on cluster of PCs or standalone parallel machine.

The data model of SEQUOIA contains the following components:

2.3.1 Grid and state vector

Assimilation increment and analysis error variance

The global assimilation increment on the estimation grid, g_dx, is defined and
allocated as follows:

integer, save :: ak_mvs, ak_nodes
real, dimension(:,:), allocatable, save :: g_dx
allocate ( g_dx(ak_mvs,ak_nodes) )

where ak_mvs is the number of variables on the vertical, and ak_nodes the num-
ber of nodes in the horizontal. Those notions are clarified below. The analysis
error variance g_ea is defined in the same way as g_dx.

Specification of Data Model 11

http://www.awi.de/
http://www.data-assimilation.net/


Deliverable 1.3

Multivariate Vertical Sequence (MVS) and variable types

If one takes the global grid, state variables on the vertical form the MVS. For
example, an MVS size ak_mvs of 121 would result from the variables sea-surface
height and 30 levels of each temperature, salinity, and of both components of
horizontal velocities.

Not all variables may be present at one particular node, e.g. because of a
shallower depth. An array is used store the number and indices of variables
which are present at that particular node. This is

! number of vertical variables at nodes
integer, dimension(:), allocatable, save :: g_nmvs
allocate ( g_nmvs(ak_nodes) )
! indices of variables at nodes
integer, dimension(:,:), allocatable, save :: g_rmvs
allocate ( g_rmvs(ak_mvs,ak_nodes) )

State-space objects such as g_dx are defined in the “packed MVS” format defined
by g_nmvs and g_rmvs, i.e. g_dx(i,:) refers to variable g_rmvs(i,:) of the global
MVS.

The state variable types are stored in a separate array in packed MVS format:
! state variable types
integer, dimension(:,:), allocatable, save :: g_tmvs
allocate ( g_tmvs(ak_mvs,ak_nodes) )

The state variable types in g_tmvs and data (observation) types in d%type (de-
fined further below) are of course expected to be consistent with each other,
although of course the number of state variable types and data types can be
different for one particular problem.

Usually the same numeric value to refers to one particular variable type. The
state variable depths are defined in packed MVS format as:

real, dimension(:,:), allocatable, save :: g_znod
allocate ( g_znod(ak_mvs,ak_nodes) )

In g_znod, depth is to be replaced by any appropriate coordinate for models not
in z-coordinates.

Horizontal grid

The following variables are defined at each horizontal node:
! unique node ID
integer, dimension(:), allocatable, save :: g_node_id
allocate ( g_node_id(ak_nodes) )
! geographic coordinates
real, dimension(:), allocatable, save :: g_xnod, g_ynod
allocate ( g_xnod(ak_nodes) )
allocate ( g_ynod(ak_nodes) )

Usually, the grid is unstructured and made up of triangular elements (“cells”),
whose vertices are the nodes mentioned above. When the input grid is struc-

12 Data models of data assimilation systems
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tured (finite-difference models), it is broken up by the code into triangular cells
while maximizing isotropy.

integer, save :: ak_cells
! pointers to node numbers for each cell
integer, dimension(:,:), allocatable, save :: g_icel_nodes
allocate ( g_icel_nodes(ak_cells,3) )

Note: In the code, there is a difference between ak_nodes, the “declared”
number of nodes, and g_nnod, the number of active nodes. This distinction is
omitted here. The same distinction holds for ak_cells and g_ncel.

2.3.2 Observations

Internal representation

Individual observations, or observation-space objects such as “bogus” observa-
tions, are defined as a derived data type as follows:

type ak_obs_struct
sequence
integer :: type ! observation type

! – same coding as for state-space variables
real :: x, y, z, t ! space-time coordinates of observation
real :: yo ! observed value
real :: eo_std ! observation error standard deviation
integer :: qcflag ! quality flag
integer :: status ! data status marker
integer :: set ! dataset number
real :: yopert ! perturbation on observed value
integer, dimension(3) :: vertex ! pointers to nodes

! surrounding observation
real, dimension(3) :: lambda ! corresponding barycentric coordinates
real :: yf ! prior (forecast) value, model proxy for the observation
real :: yp ! persisted value from last analysis
real :: dy ! innovation

end type ak_obs_struct

Some of these fields are provided by the user (type,x,y,z,t,yo,eo_std,qcflag,status),
some by the data loader (set), the others are calculated by the code.

The data status markers are one way to individually select observations to be
“verification-only” (not used in the inversion) or to set bogus observations. Mark-
ers can also be defined globally per dataset. Currently, declarations are static in
the code:

integer, parameter :: AK_OBS = 100000 ! max number of observations
type(ak_obs_struct), dimension(AK_OBS), save :: d ! the data vector
integer, parameter :: AK_TYPES = 10 ! max number of data types
integer, dimension(AK_TYPES) :: data_type
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Observation operator

In SEQUOIA, there are two ways to handle observations: Proxies of obser-
vations d%yf are directly obtained from the model interface at the surrounding
nodes d%vertex, then interpolated at the horizontal location of the observations
by means of d%lambda. This is done at the time step when the observation occurs.
There is no need for an observation operator for the proxies.

Some of the SEQUOIA kernels require explicitly an observation operator in
the form of a tangent linear observation matrix (the H matrix) when forming,
e.g., the Kalman gain. This is done by means of a library call (ak_obsop() user-
provided routine). There is obviously one observation operator per data type.

In the BELUGA kernel no observation operator is needed for the covariances,
which are calculated from the state-space samples and proxies provided by the
members.

2.3.3 Samples library

In the BELUGA EnKF-kernel not the covariances themselves are shared between
different ensemble members, but the samples library, which gathers the state-
space and data-space samples needed for the covariance calculations. The sam-
ples library is defined as follows:

integer, save :: mlist_size, p_glo
! state-space samples
real, dimension(:,:,:), allocatable, save :: xf_E
allocate ( xf_E(ak_mvs,ak_nodes,mlist_size) )
! data-space samples
real, dimension(:,:), allocatable, save :: yf_E
allocate ( yf_E(p_glo,mlist_size) )

where mlist_size is the size of the members list (the number of members), and
p_glo is the currently selected number of observations over the integration time
segment.

The following objects are also shared between members:
! state-space ensemble mean
double precision, dimension(:,:), allocatable, save :: xf_mean
allocate ( xf_mean(ak_mvs,ak_nodes) )
! state-space ensemble variance
double precision, dimension(:,:), allocatable, save :: xf_var
allocate ( xf_var(ak_mvs,ak_nodes) )
! data-space ensemble mean
double precision, dimension(:), allocatable, save :: yf_mean
allocate ( yf_mean(p_glo) )
! data-space ensemble variance
double precision, dimension(:), allocatable, save :: yf_var
allocate ( yf_var(p_glo) )

The analysis of the BELUGA-kernel is carried out locally at each grid node.
Observations are selected within an “influence bubble” in space and time. Covari-
ances are calculated for each node by each member from the member copy of the
samples library, using localization. There is no global calculation of covariances.

14 Data models of data assimilation systems
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2.4 SESAM

The SESAM code, developed in the MEOM group at LEGI, performs the vari-
ous basic operations that are required in sequential data-assimilation systems.
These operations include square root and ensemble observational updates (with
global or local parametrization of the forecast error statistics), adaptive statistical
parametrizations, anamorphosis transformations, or the computation of truncated
Gaussian estimators. SESAM also provides diagnostic tools, to compute obser-
vation representers, EOF decompositions or regional RMS misfits, and various
utilities for extracting observations, converting between file formats or performing
simple algebraic operations.

SESAM uses a black-box coupling to a model through NetCDF files. Thus,
separate programs are used to peform the model integrations and the tools pro-
vided by SESAM.

Basic variables

SESAM uses a simplistic data model. Nearly all variables are native arrays and
no ancillary data is attached. In particular, the following quantities exist:

State vector:
BIGREAL, dimension(:), allocatable, save :: vectx

Note: BIGREAL is a precompilation keyword allowing the user to choose the type
of the data.

Observation vector:
BIGREAL, dimension(:), allocatable, save :: vecto

Ensemble of state vectors:
BIGREAL, dimension(:,:), allocatable, save :: basexr

Note: The last two characters in a variable name give the names of the dimen-
sions to which the array is allocated. Thus: x=state variables, r=ensemble mem-
bers or columns of the squared root covariance matrix.

Observed part of ensemble:
BIGREAL, dimension(:,:), allocatable, save :: baseor

Observation error covariance matrix (assumed to be diagonal):
BIGREAL, dimension(:), allocatable, save :: diago

Observation Operator

The observation operator uses a derived data type of the form:
TYPE(type_poscoef), dimension(:,:), allocatable :: poscoefoj

This derived type is defined as
TYPE type_poscoef

INTEGER :: pos
BIGREAL :: coef

END TYPE type_poscoef

Assumed is a linear operator. For each observation it is:
pos: The indices of the states variables in the state vector to which it is related.
coef: Coefficient of the linear relation with the observations.
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This scheme is specifically designed for linear interpolation, so that the second
dimension of the array is typically 4 in 2D and 8 in 3D.

Localization

In case of localization, there is for each subsystem of dimension z:
Reduced dimension state vectors:

BIGREAL, dimension(:,:), allocatable :: vectrz
Reduced space covariance matrices:

BIGREAL, dimension(:,:,:), allocatable :: covrrz

Ancillary data (such as grid, mask,...) are only used for preprocessing to
prepare these simple types from model files. In particular, the grid is required
to prepare the observation operator. However, this is done in a preprocessing
step and done in such a way that this is well separated from the generic methods
themselves.

Ancillary data are also used in a preprocessing step to define the localization
arrays. These are are defined by
(i) one state vector type array to identify the index of the subsystem to which each
state variable belong, and
(ii) for each of the subsystem of dimension z, the list of state variables inside the
corresponding influence bubble.

2.5 NERSC EnKF

NERSC uses a Fortran90 implementation of the EnKF for operational use in the
TOPAZ system, which is used in the MyOcean project (there is also a Matlab
research toolbox, which is not described here). Both the interface and paral-
lelization are optimized for the HYCOM output file structure. However, they can
be adapted by a skilled scientist to a different model. Classical diagnostics such
as the innovations, ensemble spread, Degrees of Freedom of Signal (DFS) and
Spread Reduction Factor (SRF) are produced in NetCDF format for easy moni-
toring of real-time forecasting and long reanalysis runs.

For the operational use of the EnKF, the NERSC EnKF system is optimized
to handle large amounts of data. For each assimilation cycle, about 2.5 million
observations of different quantities (satellite data of the sea level anomaly, surface
temperature, ice concentration and drift, as well as in situ data of temperature
and salinity) are assimilated. The EnKF analysis is linked to the HYCOM model
through files.

The analysis part of the code is executed for the TOPAZ system in three steps
using a different number of processes:

1. Prepare observation (computation of pivot point, superobing to reduce total
number of observations, profile passed in hybrid coordinates).

2. Assimilate observation

3. Post-processing (assemble output and cut-off unrealistic values)
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There are a several particular features of the analysis:

• Available are two analysis schemes: EnKF and the Deterministic EnKF
(DEnKF)

• The observation error covariance matrix is assumed diagonal

• A moderation is used that inflates the observation error if the ensemble
spread and observation error do not intercept.

• A local analysis step is performed separately for each horizontal field in
each layer. The innovations are tapered dependent on distance.

• The computation of the transform matrix (X5-matrix) and the model update
are fully parallel using MPI.

• A parameter estimation possibility is used for selected parameters.

Observations and observation operator

Observations are described by a derived type. It contains all information on the
value and type of an observation as well as the location of an observation. The
derived type is defined as:

type measurement
real d ! Measurement value
real var ! Error variance of measurement
character(len=OBSTYPESTRLEN) id ! Type, can be one of those:
! ’SST’, ’SLA’, ’ICEC’, ’SAL’, ’TEM’, ’GSAL’, ’GTEM’, ’TSLA’
real lon ! Longitude position
real lat ! Latitude position
real depth ! depths of position
integer ipiv ! i-pivot point in grid
integer jpiv ! j-pivot point in grid
integer ns ! representativity in mod cells (meas. support)
! ns=0 means: point measurements
real a1 ! bilinear coefficient (for ni=0)
real a2 ! bilinear coefficient
real a3 ! bilinear coefficient
real a4 ! bilinear coefficient
logical status ! active or not
integer i_orig_grid ! orig. grid index for ice drift processing
integer j_orig_grid ! orig. grid index
real h ! layer thickness,
integer date ! age of the data
integer orig_id ! used in superobing

end type measurement

Analysis step

The analysis step of the NERSC EnKF uses basic data types. Dimensions are
specified as integers:
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integer :: nobs ! number of observations
integer :: nrens ! number of ensemble members
integer :: idm, jmd ! Horizontal grid indices

Arrays are used to store the innovations (observation minus forecast ensem-
ble state) and the ensemble observation anomalies:

real :: d(nobs) ! Innovation
real :: S(nobs, nrens) ! Ensemble observation anomalies

In order to reduce the required memory during the computations of the anal-
ysis step, local transformation matrices are pre-computed and stored in files. For
the analysis step, they are then read and processed sequentially. Also the dif-
ferent fields to be analyzed are treated separately and distributed over several
processors.

2.6 OAK

The Ocean Assimilation Kit (OAK) provides a modular toolbox for data assimila-
tion mainly aimed at oceanographic applications. The definition of state variables
is very flexible in OAK. By means of easy configuration files the user can select
arbitrary variables from NetCDF files. Curvilinear grids are supported as well. In
addition, OAK provides global and local versions of the analysis

The data model bases on Fortran arrays with the addition for derived types to
describe the data structure in the model and the memory layout.

2.6.1 Memory layout description

The derived type MemLayout contains the following information

• Names of the individual variables

• Land-sea mask (as array pointer of type integer)

• start and end index in the state vector for each variable

• Permutation index (optional, useful for local assimilation)

• Distribution over nodes for parallel computing

The transition between model fields and state vector is performed by pack-
ing/unpacking functions. The assembly of the observation vector is performed by
an analogous packing function as used for the state vector. For the state vector
the packing function is as follows:

packVector(ML,x,temp,salt, uvel, vvel, ...)
where the arguments for the separate fields, e.g. uvel are optional in the inter-
face. The memory Layout is given by the argument ML. The vector can also be
loaded from a file by the function:

loadVector(path,filenames,ML,x).
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2.6.2 Model grid description

The model grid is described in the derived type grid, which contains the following
information

• The dimension of the grid

• Land-sea mask

• Coordinated for every grid point

The derived type only supports structured grids.

2.6.3 Observation operator

The observation operator is defined as a sparse matrix with a type including the
following information:

• Number of non-zero entries

• Number of rows and number of columns in full matrix

• i, j indices of non-zero entries

• value of matrix element (usually an interpolation coefficient)

. This scheme only supports linear observation operators, but nonlinear obser-
vation operators can be used by augmenting the state vector by the observed
variable. The sparse matrix contains only non-zero elements and implements
an operator for multiplication with a matrix or a vector. Bi-linear interpolation
coefficients in the observation operator are based on the coordinates of the ob-
servations and the model grid definition. For parallel computing, the observation
operator can be distributed across nodes as a function call.

The derived data types are only used in high-level routines, which perform the
loading and saving of the state vector, ensemble, and observations. The routines
also compute assimilation diagnostics per variable

2.6.4 Variables in low-level routines

The low-level computational routines use only Fortran arrays. Used are the basic
dimensions:

n ! Size of state vector
m ! Size of observation vector
r ! Ensemble size

The Fortran arrays used are
x(n) ! State vector
Hx(m) ! Observed part of state vector
yo(m) ! Observation vector
S(n,r) ! Ensemble perturbations in state space
HS(m,r) ! ensemble perturbations in observation space
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2.6.5 Local analysis

To perform local analysis updates, a partition vector part(n) of type integer is
use. All elements with the same entry in the partition vector belong to the same
local analysis zone. Frequently, the local partitioning uses vertical water columns.
A permutation vector is applied to ensure that all variables belonging to the same
zone are contiguous in memory.
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Chapter 3

Aspects of the MyOcean data
models

The MyOcean initiative uses different ocean models for operational forecasting.
Among these models are the NEMO model and the TOPAZ system, which uses
the HYCOM ocean model. Both models are also used by some of the members
of the SANGOMA consortium.

The NEMO model, which will also be used for benchmarking in WP4 of SAN-
GOMA uses CF-compliant NetCDF files. Internally, basic data types are used.

Derived data types are used in NEMO for diagnostic purposes and to describe
forcing input files.

For the connection with SANGOMA assimilation tools, the CF-compliance of
the output files is of relevance. Most connections between the NEMO model and
assimilation systems used in SANGOMA will be performed using the information
from these files.
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Chapter 4

SANGOMA data model

4.1 General aspects

For the SANGOMA tools, we consider two types of interfaces:
In-memory: The in-memory interface has to be specified, if an assimilation tool

is a callable function or subroutine that is called within the model
code or the data assimilation system.

Files: This type of interface occurs, when the assimilation tools are in a
separate executable program than the numerical model. Thus, a
file standard has to be described to allow for compatibility of files
with the reading and writing routines in the tools.

For the file interface, SANGOMA will base on the NetCDF file format, which is
very popular for oceanographic and meteorological data. NetCDF is a binary file
format that is self-describing by allowing to store meta data as attributes in the file
header followed by the data in the body of the same file. SANGOMA will follow
the CF-convention for the naming of variables and meta data inside the files. By
following the CF-convention, the file-based interface of SANGOMA will also be
compatible with output files of models used in MyOcean. The file interface of
SANGOMA is described in section 4.2.1.

Regarding the in-memory interface, the assessment of the data models in the
different data assimilation systems used by the members of the SANGOMA con-
sortium showed a wide range of differences. The object oriented data model of
OpenDA stands out from the other assimilation systems, which are implemented
in Fortran. These systems use basic data types, i.e. Fortran arrays and variables
at least in their computational routines. Some systems, like OAK and Sequoia/-
Beluga use derived types for the handling of observation, e.g. the definition of
the observation operator. These derived data types are distinct for the different
assimilation systems. Within MyOcean, the models also use commonly basic
data types. Sections 4.2.2 to 4.4 will described the logical data model for the
in-memory interface as well as the aspects of a compatible binding to C code and
some considerations for the interface description.
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4.2 Logical data model

4.2.1 File interface

Introduction to NetCDF

NetCDF is a popular data format for oceanographic data. It uses an efficient
binary data representation, that is portable across different operating systems.
Access to the data is provided by a library with bindings to many programming
languages including Fortran, C, java and matlab. The official NetCDF website at
http://www.unidata.ucar.edu/software/netcdf/ provides a lot of useful information.
In addition to the libraries, many useful tools exist, eg. to show or plot the contents
of a NetCDF file.

Between version 3 and version 4 of NetCDF the default binary format has
been changed. Version 4 now uses HDF as the binary format. This means that
NetCDF files written with the version 4 library can also be read with the HDF
library, but no longer with the version 3 library. Fortunately, it is still possible to
read files written by the version 3 library with the new library. Because only part
of the available tools have been updated to to version 4, it is not a trivial question
which version should be used, but we will try to give some recommendations
below.

The basic storage elements in NetCDF are a number of integer and floating
point representations and multidimensional arrays. Each element has a name
and can have attributes. Attributes help describe the contents to make the NetCDF
file self-describing. Some useful attributes are a pointer to the documentation,
units, coordinate descriptions.

Some useful features of NetCDF over binary files written directly from a For-
tran program are:

• Existence of many tools to create, modify and display the contents

• Language bindings for many languages

• Possibility to create self describing files, with the use of attributes

• Possibility to read and write part of an array in slices, eg. 2D (x,y) slices
into a 3D (x,y,t) array.

• Transparent transfer of data over internet with the OpenDAP protocol. Re-
mote files can be accessed as if they were local and only the data that is
actually requested is transfered, which is very useful for spatial and tempo-
ral selection of data.

• Possibility to transparently compress the data (version 4 only)

The dimensions of an array in a NetCDF file have names. These names can
be used to link the dimensions between arrays. In the short example below, the
salinity array has dimensions (time, depth, lat, lon). Note that in Fortran
the dimensions would be reversed, so this array corresponds to a Fortran decla-
ration as REAL(KIND=C_FLOAT) :: salinity(nlon,nlat,ndepth,ntime). The
array lat(lat) has the same name for dimension as the array name, but only
the dimension name links it to the salinity array.
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dimensions:
time = 2 ;
depth = 24 ;
lat = 166 ;
lon = 91 ;

variables:
float salinity(time, depth, lat, lon) ;
float lon(lon) ;
double time(time) ;
float lat(lat) ;
float depth(depth) ;

Meta data standardisation

To further standardise the use of attributes the CF-convention was invented. The
CF-standard is still being extended. The latest version, version 1.6 at the time of
writing this document, can be found at http://cf-pcmdi.llnl.gov/. Some important
aspects of the CF-standard are:

• standard_name The list of standard names describes common variables
for meteorology and oceanography (see http://cf-pcmdi.llnl.gov/documents/cf-
standard-names) For example the standard_name for salinity is sea_water_salinity.
Standard names are important to select matching variables.

• units Standard units are used to allow for conversion, eg ’hPa’ or ’m/s’

• spatial axis NetCDF supports several options, but the of longitude and
lattitide arrays is the simplest.

• time axis Definition of the offset and units for time eg ’hours since 1990-
12-25 0:0:0’

• ordering of dimensions In CF the order of the spatial and temporal di-
mensions is fixed to (time, depth, lat, lon). This means that time is
the slowest running index, so that time slices will be stored as continuous
blocks of data in the file. Note that for Fortran arrays the order is reversed,
because the fastest running index comes first in Fortran.

The example below shows a part of the header of a NetCDF that contains a
4D array of salinity. The full header can be found in the appendix and more exam-
ples are easily generated with ncdump -h <filename> from examples available
on internet, such as the excellent MyOcean site http://www.myocean.eu.org/.

dimensions:
time = 2 ;
depth = 24 ;
lat = 166 ;
lon = 91 ;

variables:
short vosaline(time, depth, lat, lon) ;
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vosaline:_CoordinateAxes = "time depth lat lon " ;
vosaline:_FillValue = -32768s ;
vosaline:missing_value = -32768s ;
vosaline:scale_factor = 0.001f ;
vosaline:add_offset = 30.f ;
vosaline:standard_name = "sea_water_salinity" ;
vosaline:long_name = "Sea Water Salinity" ;
vosaline:units = "1e-3" ;

float lon(lon) ;
lon:standard_name = "longitude" ;
lon:units = "degrees_east" ;
lon:long_name = "longitude" ;

double time(time) ;
time:standard_name = "time" ;
time:units = "seconds since 2011-04-07 00:00:00" ;

float lat(lat) ;
lat:standard_name = "latitude" ;
lat:units = "degrees_north" ;
lat:long_name = "latitude" ;

float depth(depth) ;
depth:standard_name = "depth" ;
depth:units = "m" ;
depth:positive = "down" ;
depth:long_name = "depth" ;

// global attributes:
:title = "North West European Shelf from UK Met Office Model FOAM 7 km" ;
:institution = "UK Met Office" ;
:references = "http://www.ncof.co.uk" ;
:source = "UK Met Office Operational Suite, FOAM 7 km run 2012-05-29" ;
:Conventions = "CF-1.0" ;

Additional SANGOMA policies

Within the SANGOMA project, NetCDF files mainly serve to exchange data be-
tween models and the data-assimilation tools. Many ocean models can already
produce NetCDF files, but standards and versions are different between mod-
els. In SANGOMA we strive for compatibility and simplicity. Since it is difficult to
foresee all posibilities we provide guidelines rather than a specification/rules.

• Keep it simple. Since the NetCDF files are used to connect multiple models
to multiple data-assimilation tools, more complex features are likely to break
compatibility to some or may create a substantial amount of work for other
partners of SANGOMA.

• SANGOMA tools should work for CF-compliant input files. This is probably
hard to achieve to the full extent, but ocean models are not likely to use
the more complex CF-features. We should probably start simple and adjust
when needed.
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• Be lenient to standards of model output. Educating developers of ocean
models is not a task of SANGOMA. Different communities may be involved
making it hard to change the CF-compliancy of model output. For many
data-assimilation tools much of the meta-data can safely be ignored, mak-
ing it unkind to throw errors for attributes that are not necessary. The output
of data-assimilation tools is often of the same kind as the input files, e.g.
for forecasted and analyzed state. The use of a template file derived from
the input file will work even if the model output does not completely adhere
to CF-standards. It also avoids writing code to copy all possible kinds of
attributes to the output files, which a subsequent model run may need to
read the analyzed state.

• Selection of arrays on which the tool should operate should preferably be
configurable and not inferred from the CF-attributes. There are several rea-
sons for this. The input file may contain more data than one wishes to use
the tool for. Future users of the tool may have datatypes not foreseen at the
time of writing the tool, which is more easily adapted through configuration
than by inference. For example a global ensemble analysis update does
not use coordinate values, so a tool written for and tested with a model with
a structured grid can easily be adapted for an unstructured grid if the tool
ignores the meta-data in the attributes.

• Tools can be compiled with NetCDF version 3 or 4, but features that break
compatibility with version 3 should be avoided, unless they are necessary
for the tool to function. Using specific version 4 features is likely to make
it impossible to use the tool/code in some cases. If some NetCDF version
4 dramatically improves the functionality or performance one can also con-
sider to provide this feature as an option.

• Some tools will work on ensembles. Though it is possible to store ensem-
bles in a single NetCDF file, we recommend to use separate files for each
member of the ensemble. This probably makes the interaction with the
ocean models simpler, since ocean models are unlikely to recognize the
additional dimension. Also, existing tools for displaying the data are less
likely to work.

• It may be necessary or useful to read or write datatypes that are not com-
mon to the NetCDF community, eg and ensemble transform matrix or a
probability density function. It is kind, but not required, to try to use a logical
extension of the CF-standard for writing. For reading, it is probably best to
be very lenient on standards in these cases.

4.2.2 In-memory interface

For the code-based or in-memory interface, the compatibility of the SANGOMA
tools written in Fortran an other programming languages like C, Matlab, or Java
has to be kept in mind. To ensure the interoperability with interfaces that are
directly callable from Fortran and the other languages, the data model of SAN-
GOMA relies on elementary data structures for both input and output variables,
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and avoids complex data types. In particular, the SANGOMA data model relies
on vectors and matrices, which are elementary data entities in the linear algebra
calculations of the analysis steps calculated by the different assimilation systems.
In Fortran code, these data entities will be represented by arrays. By using ba-
sic data structures, the data model is in fact similar to that used by the PDAF
assimilation system that was described in section 2.1.

The data model excludes the use of Fortran derived types from the interfaces.
This is motivated by the fact that Fortran derived types and C structs are only
compatible if they are defined identically in both languages. In particular, the
same data elements need to be included in the types and structs in both lan-
guages. As the survey of the data models of the different assimilation systems
showed, the derived types in the different systems are distinct and often include
a long list of information. If one would introduce derived types in the interface of
the SANGOMA tools, one would need to define one standard derived type, which
then needs to be defined identically in Fortran and C. The developers of the dif-
ferent systems would either need to adapt their derived types to this SANGOMA
standard type, or to fill the SANGOMA derived type from their system-specific
data type. To avoid the overhead to filling or adapting derived data types, call-
back functions will be used within SANGOMA tools in cases where basic data
types are insufficient. These call-back functions will be specified as an argument
in the call to a tools (basically to represent a function pointer, if viewed from C)
and will be called from within the tool routine. In the call-back function, a system-
specific derived data type can be included, e.g. by using a Fortran module.

The decision to rely on basic data types, allows in particular the programmers
that are used to Fortran to continue using typical implementation styles of the
Fortran programming language. This is considered to be important, because also
most large-scale ocean and atmospheric models, including those ocean model
used within MyOcean are coded in Fortran. An alternative would have been
to base on data abstraction as it is used in the object-oriented approach of the
OpenDA assimilation system. However, discussions among the SANGOMA part-
ners showed, that such strategy felt non-natural for the Fortran programmers. As
it cannot be expected that the abstraction would lead to a better computational
performance, it is more natural to rely on basic data types.

Analogous to PDAF, the SANGOMA data model assumes the existence of
basic dimensions, which are just scalar integer numbers. In fact, on the compu-
tational level, a data assimilation system requires only a very limited number of
dimensions (the names of the variables are suggestions):

• size of state vector (nstate)

• number of (scalar) observations (nobs)

• size of ensemble (nens)

There might be additional dimensions, like the number of observation of a particu-
lar field, if observations of different physical quantities are assimilated. However,
for the handling of observations, which can become complex if one seeks for
an abstract description, call back functions are recommended. These will also
allow for more complex data structures, which can also be specific for a data
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assimilation system. Further, the parallelization might result in additional dimen-
sions. These are usually sub-dimensions. That is, if a state vector of size nstate
is distributed over several processes, each process holds a sub-vector of size
nstate_l(i).

The dimensions listed above specify the size of vectors and matrices that
represent different quantities in the tools. For example:

• A state vector is logically a vector of size nstate. It will be represented by
a one-dimensional array.

• An ensemble matrix is a matrix holding in each of its columns one state
vector. As the ensemble size is nens, the size of the ensemble matrix is
nstate × nens. (Here, the first dimension describes the number of rows in
the matrix, while the second dimension described the number of columns.)

• The observation vector is logically a vector than contains the values of all
available (scalar) observations. Hence the size of this vector is nobs.

• There might be further quantities in the assimilation systems, that are logi-
cally also vectors or matrices. One example is the ensemble projected onto
the observation space, i.e. the ensemble of the model counterpart of the
observational data. This ensemble is a matrix of size nobs × nens.

The review of the data models of the assimilation systems showed, that they
use also more complex data structures, for example to describe the observation
operator or the memory layout of the state vector. It can be useful to group
the meta data describing, e.g., the observation operator. For this, the Fortran-
based assimilation systems use derived data types. For the tools developed in
SANGOMA, we will rely on call-back functions to make use of more complex data
structures. These functions allow for a flexible specification of more complex data
structures, while ensuring the interoperability of different languages.

An example for a call back function is the handling of the observation error
covariance matrix. Many assimilation algorithms need to multiply the observa-
tion error covariance matrix or its inverse with some other matrix, which is used
temporarily during the calculations of the analysis step. In order to allow for an ab-
stract description of the observation error covariance matrix one can introduce a
call-back function, which includes in its interface the matrix with which the product
has to be computed. The call-back function has then to return the final product.
A similar case might appear if one uses a covariance matrix to describe random
noise to be added during the ensemble integrations in order to simulate model
error. The description of the observation error covariance matrix is handled within
the call-back function, such that the calling routine does not need to know how the
observation error covariance matrix is described. There can be different cases
of a covariance matrix, which can be described in different ways. In increasing
complexity, some possibilities are:

• A diagonal matrix with constant variance. In this case, one only needs the
information the covariance matrix is diagonal and the single value of the
variance.
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• A diagonal matrix with varying variances. If the variance is spatially de-
pendent, then one needs the information that the matrix is diagonal, but in
addition, one needs a vector of variances to describe the covariance matrix.

• A non-diagonal matrix with varying variances. This is the most general
case. In some situations one might want to describe the matrix by the
values of the diagonal, i.e. a vector of variances, plus a decorrelation length
scale. The decorrelation length scale lets one compute the off-diagonal
matrix entries. However, one might also want to directly supply the full
observation error covariance matrix. Often the observation correlations are
of short range, such that a significant part of off-diagonal entries are zero. In
this case one might prefer to store the observation error covariance matrix
in a sparse matrix format.

Another case where call-back functions can be used is for the handling of
observation operators. Usually, one needs to compute the action of the obser-
vation operator onto a state vector. Thus, one can use a call-back function that
is supplied with a state vector and which returns the vector resulting from the
application of the observation operator onto the state vector. There are different
observation operators dependent on the type of observation. For example:

• The simplest case are observations of a model field at grid point locations.
In this case the observation operator is a matrix whose entries are either
1 (observation present) or 0 (no observation). One could store this obser-
vation operator in a sparse matrix format as, e.g., the OAK assimilation
system does (see, section 2.6).

• If observations of a model field are present that are not located at grid point
locations one needs to apply interpolation. In many cases one can precom-
pute the interpolation coefficients, as is used, e.g., in the SESAM assimila-
tion system (see section 2.4) or the OAK system.

• If observations are nonlinearly related to a model field, like the logarithm of a
concentration, e.g. of an ecosystem model, there are different possibilities.
One might either include these nonlinearly related quantities in the state
vector and use the observation operator for grid point locations (used, e.g.
in OAK, see section 2.6). If one wants to avoid the additional storage cause
by extending the state vector, one might want to allow for the application
of the nonlinear operator in the call-back routine (used e.g. in PDAF, see
section 2.1). A nonlinear relationship, like the computation of the logarithm,
could be directly implemented in the call-back function.

Overall, the use of call-back functions allows a very flexible handling of com-
plex data structures. For example, they allow to implement the handling of the
product of a matrix with a covariance matrix, such that it is compatible and effi-
cient with a particular assimilation system. Also, the handling of the observation
operator can be implemented in the most efficient way, given the frame of a cho-
sen data assimilation system. This implies that, different assimilation systems
will use their own call-back function. However, it will also give us the potential to
unify more complex data structures, at least among the Fortran-based assimila-
tion systems. As the call-back functions will be system-specific, they should be
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handled with care. Thus, the basic data model should be used as far as possible.
Call-back functions should only be used in cases where the inclusion of the addi-
tional information in form of basic data types in a function interface would overly
increase the length of the interface or where it would restrict the flexibility of the
functionality too much.

The interfaces to call-back functions need to use the basic data structures to
ensure the interoperability of different programming languages. The more com-
plex data structures should be included in the call-back functions, e.g. by Fortran
modules. As such the interfaces of call-back functions will be similar to the inter-
faces of the tool routines. In both cases only the required minimum of information
should be included in the interfaces, like dimensions and the required arrays. For
example, a function computing the product of a matrix with a covariance matrix,
would need the dimensions of the input matrix as well as the matrix itself. The
return matrix has also to be included, but no additional dimensions, because the
return matrix will have the same size as the input matrix.

4.3 Interfaces with C-binding

In this section, we discuss some more technical aspects of the proposed in-
memory interface of shared tools in SANGOMA. The tools we share for in-memory
usage (functions and subroutines) will be denoted by "shared routines" in this
section. Everything that is stated on the interface does only count for the shared
routines. Not for routines that are called by the shared routines (except for call-
back functions).

As mentioned in Section 4.2.2, we aim for usage and sharing of tools from
various languages. Therefore

• we only allow basic data types, supported in all relevant languages, in the
interfaces of the shared routines.

• we ensure a proper binding with C, because C routines can be called di-
rectly from many programming languages.

Many of the partners in SANGOMA use Fortran as their primary programming
language. The Fortran 2003 standard contains C-binding functionality that allow
Fortran code to be directly called from C and vice versa in a platform independent
way. With these Fortran 2003 features, it is possible to realize the C binding of
existing Fortran code with just a few additional keywords in the subroutine head-
ers. We will give some basic tutorial information on the C binding functionality of
Fortran 2003 in section 4.3.9, but much will already show up in the examples in
earlier sections.

4.3.1 Argument types of shared routines

To ensure that shared routines implemented in various programming languages
can be shared we only allow basic data types for the routine arguments.

The C-declaration of shared routines only have arguments of the following
types:
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• scalars by value: integers, real values and logicals (e.g. int, long, float,
double, bool).

• pointers to scalars

• pointers to arrays of scalars

• strings (special story, see section 4.3.5)

• pointers to functions conforming to the SANGOMA interface standard (call-
back functions)

Note: various precisions are allowed for integers and reals.
The Fortran declaration of the shared routine arguments allows the use of:

• scalars of the type integer, real (with appropriate specification of kind, see
section 4.3.4) and logical,

• n-dimensional arrays of the allowed scalars (fixed size),

• strings and

• functions conforming to the SANGOMA interface standard (callback func-
tions)

Notice, that Fortran supports N-dimensional arrays and the C interface only
supports arrays. N-dimensional (fixed size) arrays are stored in memory as a
contiguous block of memory (column oriented) and are therefore compatible with
the arrays in C.

Optional arguments cannot be ported between languages and are therefore
not allowed.

The use of global variables is not allowed in shared routines. The only place
where global variables can be used are in the callback routines.

4.3.2 Fixed size, assumed size vs assumed shape in Fortran

In Fortran there are different ways in which arrays are represented

• real x(m,n): "fixed size" array (legal in Fortran 1.0)

• real x(m,*): "assumed size" (legal in Fortran77)

• real x(:,:): "assumed shape" (new in Fortran90)

Both fixed size and assumed size are contiguous blocks of memory, passed to
routines by a memory pointer. The assumed shape arrays do not need to be con-
tiguous blocks of memory and cary some meta information. Note that under nor-
mal conditions the memory is contiguous, which means that fixed/assumed size
arguments of a subroutine can be called without copying of data (implemented
by the compiler) with assumed shape arrays.

The interfaces of the shared routines do not allow assumed shape arguments
but will only use fixed size arrays. However a passed fixed size argument can be
transformed into an assumed shape variable without the need to copy the content
using the c_f_pointer function of Fortran2003.
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4.3.3 Arguments by value and reference

All variables are handled in Fortran by reference (a pointer to the address is
passed). In C this is not the case. Scalar arguments, that do not change (equiv-
alent to intent(in)) are passed by value (a copy of the value of the argument
is passed). The Fortran 2003 C-binding features allow one to pass arguments
by value as well in Fortran. The programmer only needs to add a single attribute
"value" to the declaration of the argument and this does not have any implication
when the routine is used from Fortran. We encourage the declaration of scalar
arguments by value when possible to simplify calling these routines from C (and
other languages).

4.3.4 Precision of values

In order to be able to call shared routines from different languages we need to
ensure the proper precision of the data. The intrinsic ISO_C_BINDING module sup-
ports special Fortran kinds corresponds to the precisions used in C. See Table 4.1

Named constant from C type Equivalent Fortran type
ISO_C_BINDING
C_SHORT short int INTEGER(KIND=2)
C_INT int INTEGER(KIND=4)
C_LONG long int INTEGER (KIND=4 or 8)
C_LONG_LONG long long int INTEGER(KIND=8)
C_SIGNED_CHAR signed char, unsigned char INTEGER(KIND=1)
C_SIZE_T size_t INTEGER(KIND=4 or 8)
C_INT8_T int8_t INTEGER(KIND=1)
C_INT16_T int16_t INTEGER(KIND=2)
C_INT32_T int32_t INTEGER(KIND=4)
C_INT64_T int64_t INTEGER(KIND=8)
C_FLOAT float REAL(KIND=4)
C_DOUBLE double REAL(KIND=8)
C_LONG_DOUBLE long double REAL(KIND=8 or 16)
C_FLOAT_COMPLEX float _Complex COMPLEX(KIND=4)
C_DOUBLE_COMPLEX double _Complex COMPLEX(KIND=8)
C_LONG_DOUBLE_COMPLEX long double _Complex COMPLEX(KIND=8 or 16)
C_BOOL _Bool LOGICAL(KIND=1)
C_CHAR char CHARACTER(LEN=1)

Table 4.1: Table of named constants in ISO_C_BINDING and their equivalent
typed in C and Fortran

When shared routines are compiled for various precisions, the programmer
can use parameters to denote the precision of the arguments in the interface.
These parameters can then be set to the appropriate values from ISO_C_BINDING
at one central location. In the example codes that will follow we have set these
parameters in the module sangoma_base.

module sangoma_base
use, intrinsic :: ISO_C_BINDING
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implicit none

integer, parameter :: REALPREC=C_DOUBLE
integer, parameter :: INTPREC=C_INT

end module sangoma_base

4.3.5 Strings

Strings are handled different in Fortran than in C. The difference lies in the way
the length of a string is handled. Both in C and fortran, a string is a consecutive
block of memory containing characters. The length of this memory block (string
length) is undetermined in C. A null character will mark the end of the string. In
Fortran, the length of a string is fixed. Unused elements are marked with blanks.
Strings are passed in Fortran to routines as two arguments, a pointer to the string
and a (hidden) argument denoting the length, where strings are passed in C by
only the pointer.

The handing of string arguments in routines will involve conversion between
C and Fortran strings. Handing of C strings in the interface is fully supported by
the ISO_C_BINDING of Fortran 2003. Handling of Fortran strings is not, which
means we have to solve it in a compiler dependent way.

The dilemma is that limiting to C-strings in the interface is portable but very
inconvenient for Fortran systems because it results in a double conversion from
Fortran to C and back for each call. Therefore we propose that shared routines,
having string arguments contain a wrapper routine as well for the C-strings. For
callback routines this is not possible. In that case we propose to only allow C-
strings.

4.3.6 Logicals/booleans

Logicals can be passed in shared routines. However most C code will use inte-
gers for logicals and not the _Bool type (which is part of the C9X extension to
the C language). We propose to allow logicals to be part of shared routines but
advice to use integers instead (0 to denotes .false.; 1 to denotes .true.).

4.3.7 Header files

The C binding does unfortunately not generate C-header files. These header
files allow the C-compiler to check correct calling to the shared routines. Writing
header files for shared routines is not obligatory but it would be very nice when
the programmers of a shared routine provide them.

4.3.8 Call-back functions

Call-back functions are allowed in the interface. Call-back functions can be used
for operations on complex data which cannot be passed easy trough the interface.
The following example code shows the use of call-back functions.

The shown module contains a shared routine that uses a callback function:
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module sangoma_callback

use, intrinsic :: ISO_C_BINDING
use sangoma_base, only:REALPREC, INTPREC
implicit none

contains

subroutine some_operation(x, n, f_callback) &
bind(C,name="callback_some_operation")

use, intrinsic :: ISO_C_BINDING
implicit none

integer(INTPREC), value, intent(in) :: n
real(REALPREC), intent(in) :: x(n)

interface
subroutine f_callback(x,n) bind(C)

use, intrinsic :: ISO_C_BINDING
use sangoma_base, only:REALPREC, INTPREC

integer(INTPREC), value, intent(in) :: n
real(REALPREC), intent(in) :: x(n)

end subroutine
end interface

call f_callback(x,n)
end subroutine

end module

This shared routine is used both from C and from Fortran in the following two
example codes.

subroutine my_f_callback(x,n) bind(C)

use, intrinsic :: ISO_C_BINDING
use sangoma_base, only: REALPREC, INTPREC
implicit none

integer(INTPREC), value, intent(in) :: n
real(REALPREC), intent(in) :: x(n)

print *,’Welcome in my F90 callback function’
print *,’n=’,n,’x(3)=’,x(3)

end subroutine
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program my_callback

use sangoma_base, only: REALPREC, INTPREC
use sangoma_callback, only: some_operation

implicit none
external my_f_callback
real(REALPREC) :: x(10)
integer(INTPREC) :: n=10

call some_operation(x,n,my_f_callback)

end program my_callback

Or a C version of a similar program

#include<stdio.h>

void my_callback(float *x, int n){
printf("Welcome in my C-callback function\n");
printf("n=%d\n",n);
printf("x[2]=%f\n",x[2]);

}

int main(){
float x[10];
int n=10;

x[2]=123.0;
callback_some_operation(x,n, &my_callback);

}

4.3.9 Mini tutorial on C binding in fortran

In this section we will give a brief overview of the C-binding functionality in Fortran
2003. It is not our intention to fully explain all details. The purpose of this section
is to give some idea of what needs to be done in the Fortran code to make the
C-binding work.

Let us start with an example of a Fortran routine that makes use of the C-
binding.

module sangoma_pod

use, intrinsic :: ISO_C_BINDING
use sangoma_base, only: REALPREC, INTPREC
implicit none
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contains

subroutine eigvals(ens,n,m,eig) bind(C,name="sangoma_pod_eigvals")

integer(INTPREC), value, intent(in) :: m, n
real(REALPREC), intent(in) :: ens(n,m)
real(REALPREC), intent(out) :: eig(m)

! Some code here

end subroutine eigvals

! some more routines

end module sangoma_pod

The code is programmed normally like any other fortran module. There are a
few differences:

• use, intrinsic :: ISO_C_BINDING: The module containing the C-binding
utilities

• bind(C,name="sangoma_pod_eigvals"): This will tell the compiler that the
routine must be C-callable. name denotes the C-name of the routine.

• value attribute: This indicates that this argument is passed by value from
C.

• integer(INTPREC) and real(REALPREC): These type specifications make
sure that the used data type in Fortran corresponds to the data types in C.
The precision parameters are define in the module sangoma_base.

Fortran users do not notice much of the extensions when using a shared
routine as shown from the following example because all interfacing information
is automatically handled by the module file generated by the compiler.

program call_shared_tool

use sangoma_pod, only eigvals
implicit none

integer, parameter :: m=20
integer, parameter :: n=1000
real :: ens(n,m)
real :: eig(m)

call eigvals(end,n,m,eig)

end program call_shared_tool
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4.4 Standard for subroutine interface description

In order to simplify the use of the tools implemented in SANGOMA, the interface
arguments should be well documented already in the source code itself. This
implies that the (intent) attribute is used, that that a comment describes each
argument. In addition, the function or subroutine header should include a de-
scription of the functionality and use of a tool. Also, each file should include a line
showing the revision number of the file in the Subversion repository.

As an example, consider a routine that is supplied with the ensemble array
and might be doing ’some’ work with the array (e.g. it might compute the estimate
variance of the ensemble ). Without C-binding a very simple form of the routine
header might look as follows:

!$id: $
subroutine work_on_ens(nstate, nens, ens)

! This routine operates on the ensemble array.
! It can do whatever it likes...

use sangoma_base, only: REALPREC, INTPREC

implicit none

integer(INTPREC), intent(in) :: nstate ! State dimension
integer(INTPREC), intent(in) :: nens ! Size of ensemble
real(REALPREC), intent(inout) :: ens(nstate,nens) ! Ensemble array

... Code ...

end subroutine work_on_ens

This exapample demonstrated the following:

• “!$id: $” is the first line of code. In this line, Subversion will add the
revision number when the file is committed to the repository.

• The example shows Fortran statements in lowercase characters. However,
for SANGOMA we should be flexible and allow for both lower and upper
case.

• All arguments are given with intent and are followed by a comment de-
scribing the argument

• The list of arguments is followed by the description of the routine.

• “implicit none” should always be used.

• The lines should be indented to show the logical structure of the program.

• Use association (use some module) should always be used with “only:”.

• Free form source code should be used, but is not mandatory.
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• The precision of integer and floating point variables is specified by INTPREC
and REALPREC. These parameters are specified in the module sangoma_base
(see section 4.3.4). Using these parameters gives the flexibility to support
for single and double precision codes.

For the C-binding, the header has to be modified to

!$id: $
subroutine work_on_ens(nstate, nens, ens) bind(C,name="work\_on\_ens")

! This routine operates on the ensemble array.
! It can do whatever it likes...

use, intrinsic :: ISO_C_BINDING
use sangoma_base, only: REALPREC, INTPREC

implicit none

integer(INTPREC), intent(in), value :: nstate ! State dimension
integer(INTPREC), intent(in), value :: nens ! Size of ensemble
real(REALPREC), intent(inout) :: ens(nstate,nens) ! Ensemble array

... Code ...

end subroutine work_on_ens
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Chapter 5

Appendix

5.1 Example of a NetCDF header

This appendix shows the header of a NetCDF file produced by the UK Met Office
within MyOcean (see http://www.myocean.eu.org/). The standard tool ncdump -h
<filename> can be used to produce an ASCII dump of the header as shown here.
For compactness, the header is reduced to a single physical field. Also the string
length in global attributes has been shortened to let the example fit into the page.

netcdf MetO-NWS-PHYS-dm-Agg_1338362551845 {
dimensions:

time = 2 ;
depth = 24 ;
lat = 166 ;
lon = 91 ;

variables:
float lon(lon) ;

lon:standard_name = "longitude" ;
lon:units = "degrees_east" ;
lon:long_name = "longitude" ;
lon:nav_model = "Default grid" ;
lon:axis = "X" ;
lon:_CoordinateAxisType = "Lon" ;
lon:valid_min = -1.000214f ;
lon:valid_max = 8.999739f ;

double time(time) ;
time:standard_name = "time" ;
time:units = "seconds since 2011-04-07 00:00:00" ;
time:calendar = "Gregorian" ;
time:long_name = "Validity time" ;
time:data_time = 86400.f ;
time:axis = "T" ;
time:_CoordinateAxisType = "Time" ;
time:valid_min = 36244800. ;
time:valid_max = 36331200. ;

short vosaline(time, depth, lat, lon) ;
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vosaline:_CoordinateAxes = "time depth lat lon " ;
vosaline:_FillValue = -32768s ;
vosaline:missing_value = -32768s ;
vosaline:scale_factor = 0.001f ;
vosaline:add_offset = 30.f ;
vosaline:standard_name = "sea_water_salinity" ;
vosaline:long_name = "Sea Water Salinity" ;
vosaline:units = "1e-3" ;

float lat(lat) ;
lat:standard_name = "latitude" ;
lat:units = "degrees_north" ;
lat:long_name = "latitude" ;
lat:nav_model = "Default grid" ;
lat:axis = "Y" ;
lat:_CoordinateAxisType = "Lat" ;
lat:valid_min = 49.00001f ;
lat:valid_max = 60.00001f ;

float depth(depth) ;
depth:axis = "Z" ;
depth:standard_name = "depth" ;
depth:units = "m" ;
depth:positive = "down" ;
depth:long_name = "depth" ;
depth:_CoordinateAxisType = "Height" ;
depth:_CoordinateZisPositive = "down" ;
depth:valid_min = 0.f ;
depth:valid_max = 5000.f ;

// global attributes:
:title = "North West European Shelf from UK Met Office Model FOAM 7 km" ;
:institution = "UK Met Office" ;
:references = "http://www.ncof.co.uk" ;
:source = "UK Met Office Operational Suite, FOAM 7 km run 2012-05-29" ;
:Conventions = "CF-1.0" ;
:history = "Data extracted from dataset http://data.ncof.co.uk/..." ;
:time_min = 36244800. ;
:time_max = 36331200. ;
:julian_day_unit = "seconds since 2011-04-07 00:00:00" ;
:z_min = 0. ;
:z_max = 5000. ;
:latitude_min = 49.0000076293945 ;
:latitude_max = 60.0000114440918 ;
:longitude_min = -1.00021362304688 ;
:longitude_max = 8.9997386932373 ;

}
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