
OCEA0036-1

Structure and application of numerical ocean
models

Alexander Barth

a.barth@ulg.ac.be

Revision 1.6.4

September 22, 2022

Contents

1 Introduction 5

2 Equations for hydrodynamic flow 12
2.1 Navier-Stokes equations . 12
2.2 Non-hydrostatic primitive equations . 16
2.3 Primitive equations . 16
2.4 Shallow water equations . 20
2.5 Quasi-Geostrophic dynamics . 25

3 Boundary conditions 29
3.1 Surface boundary conditions . 30

3.1.1 The momentum flux . 30
3.1.2 Heat flux . 30

3.1.2.1 Net long-wave radiation . 31
3.1.2.2 Latent heat flux . 31
3.1.2.3 Sensible heat flux . 32
3.1.2.4 The solar heat flux . 33

3.2 Bottom boundary conditions . 34
3.3 Lateral boundary condition . 35

3.3.1 Coast line . 35
3.3.2 Open-ocean boundary conditions . 36

3.3.2.1 Dirichlet boundary conditions . 36
3.3.2.2 Radiation boundary conditions . 37
3.3.2.3 Flow relaxation . 37
3.3.2.4 Flather boundary condition . 38
3.3.2.5 Model nesting . 41

4 Model grids 45
4.1 Vertical coordinate . 46

4.1.1 General coordinate transformation . 48
4.1.2 z-coordinate . 57
4.1.3 σ-coordinate . 59
4.1.4 Isopycnals . 66

4.2 Horizontal grid . 67
4.2.1 Structured mesh . 67

4.2.1.1 Cartesian mesh . 67
4.2.1.2 Spherical mesh . 67
4.2.1.3 Generalized orthogonal mesh . 70

4.2.2 Grid staggering . 74
4.2.3 Unstructured mesh . 78

4.3 Time stepping . 82

5 Solving model equations on a grid 87
5.1 Finite difference . 88
5.2 Finite volume . 90
5.3 Finite elements . 91

5.4 Spectral methods . 94

6 Sub-grid scale processes 96
6.1 Surface mixed layer . 96
6.2 Bottom boundary layer . 97
6.3 Horizontal sub-grid scale process . 97

7 Programming aspects 99
7.1 Programming languages . 100
7.2 Elements of a programming language . 101

7.2.1 Elementary types . 101
7.2.2 Arrays and structures . 102
7.2.3 Statements and commands . 103
7.2.4 Subroutines and functions . 104

7.3 General structure of an ocean model . 108

A Calculus reminder 110
A.1 Divergence theorem . 110
A.2 Stream function . 111

B Transformation of coordinates 115
B.1 Example . 119

C Volume conservation in transformed coordinates 121

D Measures of humidity 125
D.1 Definitions . 125
D.2 Mixing ratio and specific humidity . 126
D.3 The ideal gas law . 127

D.4 Water vapour saturation pressure . 127
D.5 Relative humidity . 128
D.6 From water vapour pressure to specific humidity . 128

E Example of a stability analysis 130

F NetCDF 134
F.1 Fortran 90 . 134

F.1.1 Reading NetCDF files . 134
F.1.2 Writing NetCDF files . 137

F.2 Matlab and Octave . 141
F.2.1 Reading NetCDF files . 141
F.2.2 Writing NetCDF files . 142

References 148

Chapter 1

Introduction

Purpose of ocean models

▶ developed to understand and to predict the 3-D ocean circulation, as well as the distribution of temperature,
salinity and biogeochemical variables.

▶ Knowing the ocean circulation allows to compute transports, which are important for e.g. assessing/pre-
dicting biological activity, climate interactions and transport of pollutants.

Transport of pollutants

Figure 1.1: Oil spill forecast by METEO-FRANCE using currents from Mercator (adapted from Daniel, 2004)

Drift forecast

▶ Search and rescue

▶ Locating drifting objects

Iroise Sea Trail by C. Maisondieu (Ifremer) and M. Pavec (Actimar)

The journey of 29000 rubber ducks

Climate interactions

Figure 1.2: Left: SST (sea surface temperature) anomaly during El Niño (McPhaden et al., 2006). Right:
SST prediction in the Niño 3.4 region (http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.
html)

http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.html
http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.html

Storm surges

▶ Modeling of storm surges generated by a Hurricane

▶ Storm surge generated by a hypothetical Hurricane making landfall near St. Petersburg, Florida.

R.H. Weisberg and L. Zheng, USF, FL

Tsunami modeling

▶ Modeling of the Tsunami followed by the 2011 To-
hoku earthquake

▶ Tsunamis are surface gravity waves that can be
modeled with the barotropic shallow water equa-
tions

▶ Difficulty to get accurate initial conditions

M. Canter, GHER, ULg

Biological activity

Phytoplankton bloom near Kamchatka on June 2, 2010 (R. Simmon and J. Allen, based on MODIS data).

Chapter 2

Equations for hydrodynamic flow

Contents
2.1 Navier-Stokes equations . 12

2.2 Non-hydrostatic primitive equations . 16

2.3 Primitive equations . 16

2.4 Shallow water equations . 20

2.5 Quasi-Geostrophic dynamics . 25

2.1. Navier-Stokes equations

The Navier-Stokes equations provide the basis for the simplified and approximated set of equations used in nu-
merical ocean model. The terms in the Navier-Stokes equations can be interpreted as different processes. The

approximations are justified by introducing scales of variations which allow to estimate the magnitude of these
processes and neglect some terms under the given conditions.

dρ

dt
+ ρ (∇ · v) = 0 (2.1)

ρ
dv

dt
+ 2ρΩ ∧ v = −∇p+ ρgez +∇ · Fv (2.2)

where Ω is the angular velocity vector of the Earth, ∧ is the vector cross-product, g is the acceleration due to
gravity and Fv viscosity tensor of the flow. The operator ∇ and the material derivative are defined as:

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
(2.3)

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(2.4)

The density ρ is computed using the state equations and the internal energy, salinity and pressure. Instead
using internal energy, potential temperature is used which is related directly to internal energy.

ρ = ρ(T, S, p) (2.5)

Temperature and salinity are governed by advection-diffusion equations:

ρ
dT

dt
= ∇ · FT (2.6)

ρ
dS

dt
= ∇ · FS (2.7)

FT and FS are the diffusive fluxes for temperature and salinity respectively.

Exercise 1:

Give an interpretation of each term in the Navier-Stokes equations for a rotating fluid

Navier Stokes equation

Primitive equation

Boussineq approximation

Shallow water equations Quasigeostrophic equations

NonHydrostatic Primitive equation

Hydrostatic approximation

Small Rossby numberSmall density effects

Small aspect ratio

Figure 2.1: Different level of approximation of geophysical fluids

2.2. Non-hydrostatic primitive equations

The non-hydrostatic primitive equations are obtained by applying the Boussinesq approximation to the Navier-
Stokes equations. In the Boussinesq approximation, density variations are neglected except for gravity. Boussinesq
approximation removes sound waves in the ocean which would otherwise require a very small time step. Under
the Boussinesq approximation, the total mass of the fluid is no longer conserved but the total volume is. This
can introduces some difficulties in modeling effects such as sea level rise due to thermal expansion.

∇ · v = 0 (2.8)

dv

dt
+ 2Ω ∧ v = − 1

ρ0
∇p+ ρg

ρ0
ez +

1

ρ0
∇ · Fv (2.9)

where ρ0 the reference density.

Exercise 2:

How are the maximum allowable time step and wave speed linked?

2.3. Primitive equations

In most circumstances, the vertical momentum equation is dominated by the pressure gradient and gravity. In the
hydrostatic approximation, the pressure gradient is assumed to balance perfectly gravity and all other terms are
neglected. The vertical velocity is no longer computer prognostically, but it is diagnosed based on the continuity
equation.

∇ · v = 0 (2.10)

du

dt
+ 2Ω ∧ u = − 1

ρ0
∇hp+

1

ρ0
∇ · Fu (2.11)

∂p

∂z
= −ρg (2.12)

The differential operator ∇h is defined as:

∇h = ex
∂

∂x
+ ey

∂

∂y
(2.13)

The velocity v is decomposed into its horizontal u and vertical w component:

v = u+ wez (2.14)

Note:

▶ The ocean density is of the order of 1027 kg/m3 and variations of the order of 1 to 10 kg/m3

▶ Only the variation of the density around a reference density ρ0 are important for the hydrodynamics

▶ Let’s isolate the contribution of the constant density to the pressure:

∂p

∂z
= −ρg (2.15)

∂p

∂z
= −ρ0g − (ρ− ρ0)g (2.16)

∂

∂z
(p+ ρ0gz) = −(ρ− ρ0)g (2.17)

∂

∂z

(
p

ρ0
+ gz

)
= −ρ− ρ0

ρ0
g (2.18)

▶ If one subtracts from the pressure p the hydrostatic pressure due to a constant density ρ0, one obtains the
generalized pressure (apart from a constant factor ρ0):

q =
p

ρ0
+ gz (2.19)

The buoyancy b is given by the state equation ρ(T, S):

b = −ρ(T, S)− ρ0
ρ0

g (2.20)

Under the hydrostatic approximation, the generalized pressure and the buoyancy are related by:

∂q

∂z
= b (2.21)

Instead of working with pressure p and density ρ, some ocean models work with generalized pressure q and
buoyancy b. The effect of rounding errors due to the finite precision of floating number is smaller with the
later (Can you explain why the rounding error is smaller?).

▶ Since the vertical velocity is much smaller than the horizontal velocity, the Coriolis force in the horizontal
plane is generally simplified as:

2Ω ∧ v = fez ∧ u− 2Ω cos(ϕ)u ez + 2Ωcos(ϕ)w ex (2.22)

∼ fez ∧ u (2.23)

where f = 2Ω sin(ϕ) is called the Coriolis frequency, ϕ is the latitude, Ω is the the norm of the vector Ω
and 2Ω = 2Ωcos(ϕ)ey + 2Ω sin(ϕ)ez

▶ If a model is hydrostatic, non-hydrostatic effects such as deep water formation have to be parametrized.

Figure 2.2: A drifting buoy set in motion by strong westerly winds in the Baltic Sea in July 1969

2.4. Shallow water equations

H

η

h

z = 0

z < 0

z > 0

Figure 2.3: Convention for the surface elevation η, bottom depth H and total height of the water column h.

From the continuity equation, one can derive the equation for the surface elevation η:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.24)

Bottom boundary is defined by the equation z−H(x, y) = 0. A vector normal to this surface is
(
−∂H

∂x ,−
∂H
∂y , 1

)
.

The scalar product of the velocity v and this vector must be zero. Thus the bottom boundary conditions (z = −H)
is:

w = u
∂H

∂x
+ v

∂H

∂y
(2.25)

Equivalently:

d

dt
(z −H) = 0 (2.26)

The surface boundary is defined by the equation z−η = 0. Now the surface is moving! The surface boundary
condition (z = η):

d

dt
(z − η) = 0 (2.27)

The vertical velocity for z = η becomes:

w =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
(2.28)

Integration over the fluid depth:

U =

∫ η

−H

u dz (2.29)

V =

∫ η

−H

v dz (2.30)

Total depth is given by:

h = η +H (2.31)

Recall the “differentiation under the integral sign” theorem:

d

dx

(∫ b(x)

a(x)

f(x, t) dt

)
= f(x, b(x)) · b′(x)− f(x, a(x)) · a′(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t) dt (2.32)

Applied to the vertical integral of the u:∫ η

−H

∂u

∂x
dz =

∂U

∂x
− u(x, y, η)

∂η

∂x
+ u(x, y,−H)

∂H

∂x
(2.33)

idem for v:

∫ η

−H

∂v

∂y
dz =

∂V

∂y
− v(x, y, η)

∂η

∂y
+ v(x, y,−H)

∂H

∂y
(2.34)

The term in w:

∫ η

−H

∂w

∂z
dz = w(x, y, η)− w(x, y,−H) (2.35)

=
∂η

∂t
+ u(x, y, η)

∂η

∂x
+ v(x, y, η)

∂η

∂y
(2.36)

−u(x, y,−H)
∂H

∂x
− v(x, y,−H)

∂H

∂y
(2.37)

Combining all these:

∫ η

−H

∂u

∂x
+
∂v

∂y
+
∂w

∂z
dz = 0

=
∂U

∂x
− u(x, y, η)

∂η

∂x
+ u(x, y,−H)

∂H

∂x

+
∂V

∂y
− v(x, y, η)

∂η

∂y
+ v(x, y,−H)

∂H

∂y

+
∂η

∂t
+ u(x, y, η)

∂η

∂x
+ v(x, y, η)

∂η

∂y

−u(x, y,−H)
∂H

∂x
− v(x, y,−H)

∂H

∂y

Finally

∂η

∂t
+
∂U

∂x
+
∂V

∂y
= 0 (2.38)

If the fluid has a constant density and the atmospheric pressure is uniform, then

p(x, y, z) = ρ0g(η − z) (2.39)

The gradient pressure terms becomes:
∂p

∂x
= ρ0g

∂η

∂x
(2.40)

If there is no friction, then one obtains the shallow water equation which are independent on z:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g ∂η

∂x
(2.41)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g ∂η

∂y
(2.42)

∂η

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0 (2.43)

If initially, the velocity is independent of z, then it will stay uniform along the depth dimension. U = hu and
V = hv. By multiplying by these following terms h, one obtains after rearrangement:

h
∂u

∂t
=

∂U

∂t
− u

∂η

∂t
(2.44)

hu
∂u

∂x
=

∂(uU)

∂x
− u

∂U

∂x
(2.45)

hv
∂u

∂y
=

∂(vU)

∂y
− u

∂V

∂y
(2.46)

Note that the sum of the last terms is zero (idem for v). An alternative formulation is thus:

∂U

∂t
+
∂(uU)

∂x
+
∂(vU)

∂y
− fV = −gh∂η

∂x
(2.47)

∂V

∂t
+
∂(uV)

∂x
+
∂(vV)

∂y
+ fU = −gh∂η

∂y
(2.48)

∂η

∂t
+
∂U

∂x
+
∂V

∂y
= 0 (2.49)

In summary, these are the assumptions:

▶ fluid is homogeneous

▶ uniform atmospheric pressure

▶ no friction

Because bottom friction and surface friction are rarely negligible they are added a posteriori to the momentum
equation by integration the vertical friction term of the water column:∫ η

−H

∂

∂z

(
ν
∂u

∂z

)
dz = τx(z = η) + τx(z = −H) (2.50)

If the fluid is not homogeneous and its density variations are known, then an additional term called the baro-
clinic pressure gradient is included in equations (2.47) and (2.48). The shallow water equations are also solved in
three-dimensional numerical ocean models to simulate the evolution of the free surface.

The rigid lid approximation neglects the sea surface height variations in the continuity equation:

∂U

∂x
+
∂V

∂y
= 0 (2.51)

The surface elevation is no longer computed prognostically, but is chosen such that the previous is equations
are satisfied. This approximations removes surface gravity waves. Surface gravity waves are fast waves (wave
speed of

√
gH) and introduce thus a sever CLF stability criterion.

2.5. Quasi-Geostrophic dynamics

Quasi-Geostrophic equations approximate the flow of the ocean if the temporal Rossby number, the Rossby number
and the Ekman number are much smaller than one,

RoT = Acceleration
Coriolis =

1

fT
≪ 1 (2.52)

Ro = Inertia
Coriolis =

U

fL
≪ 1 (2.53)

Ek = Vert. friction
Coriolis =

ν

fH2
≪ 1 (2.54)

In this case, the pressure gradient is mostly balanced by the Coriolis force (geostrophic equilibrium). It is also
assumed that the density variations ρ′(x, y, z, t) around a average density profile ρ̄(z) are small:

ρ = ρ̄(z) + ρ′(x, y, z, t) |ρ̄| ≫ |ρ′| (2.55)

Due to the hydrostatic equilibrium, the pressure can be decomposed in a similar way:

p = p̄(z) + p′(x, y, z, t) |p̄| ≫ |p′| (2.56)

The quasi-geostrophic equations are derived by substituting horizontal velocity components by the correspond-
ing pressure gradient in the momentum equations, which gives a evolution equations for the potential vorticity q
and an equations for the stream function ϕ:

∂q

∂t
+ J(ψ, q) = ν

∂2

∂z2
∇2ψ (2.57)

q = ∇2ψ +
∂

∂z

(
f20
N2

∂ψ

∂z

)
+ β0y (2.58)

where the Jacobian J is defined by:

J(ψ, q) =
∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
(2.59)

The velocity components, pressure and density are obtained by:

u = −∂ψ
∂y

(2.60)

v =
∂ψ

∂x
(2.61)

w = − f0
N2

(
∂2ψ

∂t∂z
+ J

(
ψ,
∂ψ

∂z

))
(2.62)

p′ = ρ0f0ψ (2.63)

ρ′ = −ρ0f0
g

∂ψ

∂z
(2.64)

Since only one evolution equations has to be solved, the models based on the quasi-geostrophic equations
are numerically more efficient than model based on the primitive equations. However, the approximation need to
derive the quasi-geostrophic equations limit their applicability.

Exercise 3:

We consider the 2d-quasi-geostrophic system with viscosity on an f -plane governed by:

∂q

∂t
+ J(ψ, q) = AH∇2q +BH∇4q (2.65)

q = ∇2ψ (2.66)

where AH = 0.5 m2/s and BH = 1.6015 1010 m4/s. The initial condition is given by:

r̃ = r(1 + ϵ cos(2θ))/L (2.67)

ψ0 = exp(−r̃2)L2ω0 (2.68)

where r and θ are the polar coordinates. The parameter ϵ = 0.03 introduces a perturbation of the eddy’s
structure (L = 100 km, ω0 = 10−5 s−1). The domain is a square [−10L, 10L] × [−10L, 10L]. As time
step 1000 s is suggested. For simplicity, q and ψ are prescribed to zero at the boundary.

Exercise from “Introduction to Geophysical Fluid Dynamics” by B. Cushman-Roisin and J.-M. Beckers.

Chapter 3

Boundary conditions

Contents
3.1 Surface boundary conditions . 30

3.1.1 The momentum flux . 30

3.1.2 Heat flux . 30

3.2 Bottom boundary conditions . 34

3.3 Lateral boundary condition . 35

3.3.1 Coast line . 35

3.3.2 Open-ocean boundary conditions . 36

The equation of the previous chapter could not be solved for a fluid with finite extent without prescribing
what happen at the boundary of the fluid.

3.1. Surface boundary conditions

At the ocean surface for example, the ocean and atmosphere exchange heat, water and momentum. These
exchanges are prescribed at surface boundary conditions.

3.1.1. The momentum flux

The winds at the air-sea interface drag the surface water along its direction. This wind stress τ gives the
momentum flux between ocean and atmosphere and it is parameterized by:

τ = CDρa∥ua∥ua (3.1)

ρa is the air density and ua the wind vector at the reference level. The drag coefficient CD is parameterized
(e.g Kondo, 1975). The momentum flux is a vector with the same direction of the wind vector.

Exercise 4:

Equation (3.1) actually assumes that the ocean currents are much smaller than the winds (which is in
general a realistic assumption). Propose a modification of this equation to take current speed into account.

3.1.2. Heat flux

The exchange of heat modifies the temperature of the ocean since the temperature is directly related to the
internal energy Ei:

Ei = cpρT (3.2)

where cp is the heat capacity at constant pressure and ρ is the density of sea-water. The turbulent temperature
fluxes at the ocean surface are prescribed through the ocean-atmosphere exchange:

νE
∂T

∂z
=

Qt

cpρ
(3.3)

where Qt is the net thermal energy reaching the ocean surface per unit of length squared. Qt is the sum of:

3.1.2.1. Net long-wave radiation

▶ corresponds to the infrared radiation that the ocean surface emits similar to the back-body radiation at a
given temperature.

▶ can be reflected back to the ocean by the presence of clouds.

▶ the atmosphere emits also long-wave radiation that it partially absorbed by the ocean surface.

▶ the net long-wave radiation is the total flux due to these effects and it depends thus mainly on sea-surface
temperature, air temperature and cloud fraction.

3.1.2.2. Latent heat flux

▶ due to a difference in the water vapor content of the air at the ocean surface and at the reference level.

▶ this gradient induces evaporation or condensation.

▶ to this mass transfer corresponds a heat exchange, which is equal to the rate of vaporisation times the
latent heat of evaporation L.

The latent heat flux is parameterized as (Rosati and Miyakoda, 1988; Castellari et al., 1998):

QL = CLLρa∥ua∥(qs − qa) (3.4)

where ρa is the air density, ua is the wind vector, qs is the specific humidity of saturated air at temperature
Ts, qa is specific humidity of air. For an air pressure pa expressed in hPa, qa is obtained by the air temperature
Ta and the relative humidity r and qs is obtained from the sea surface temperature Ts by:

qa = res(Ta, pa)
ϵ

pa
(3.5)

qs = es(Ts, pa)
ϵ

pa
(3.6)

where ϵ = 0.622 is the ratio of the gas constants of dry air and water vapor and es is the water vapour
saturation pressure . (see appendix D).

3.1.2.3. Sensible heat flux

▶ due to the temperature difference between the air at the ocean surface and the air at the reference level.

▶ heat exchanged by conduction and is proportional to this temperature gradient, the heat conductivity of
the ocean surface and the specific heat of air at constant pressure

▶ for the air temperature at the ocean surface, the sea surface is taken assuming a local equilibrium.

The latent heat flux and the sensible heat flux are parameterized by classical bulk turbulent transfer formulas
(Rosati and Miyakoda, 1988; Castellari et al., 1998):

QH = CHcpaρa∥ua∥(Ts − Ta) (3.7)

where cpa is the heat capacity of air at constant pressure. Expressions (3.4) and (3.7) are well established bulk
parameterizations for the latent and sensible heat flux. Matter of discussions are however the exchange coefficient
CH (Stanton number) and CE (Dalton Number). Numerous parameterizations are proposed in the literature (e.g
Castellari et al., 1998; Kondo, 1975).

3.1.2.4. The solar heat flux

▶ The solar (or short-wave) heat flux is sometimes included in the net heat flux at the ocean surface.

▶ However, the solar energy penetrates into the water column and heat the water not only at the surface.

▶ The solar heat flux is thus more realistically described as a energy source in the temperature equations:

∂T

∂t
= · · ·+ 1

cpρ0

∂I

∂z
(3.8)

By considering only two visible frequencies, the radiation flux I as a function of depth can be described by
the following equation (z = 0 at the surface and negative in water):

I(z) = |Qs| (Aeg1z + (1−A) eg2z) (3.9)

where Qs is the light intensity at the surface, A = 0.58 is the fraction long-wave solar energy and g1 =
0.35 m−1 and g2 = 23.0 m−1 are the absorption coefficients of the shorter wave (“blue”) and longer wave
(“red”) solar energy respectively of the visible spectrum. This distribution of the light intensity corresponds to
the water of type I according to the classification of Jerlov (1968).

Exercise 5:

Explain on the basis of equation (3.9) why objects immersed in the ocean appear blue.

3.2. Bottom boundary conditions

Figure 3.1: Bottom boundary layer over a smooth ocean floor (panel A) and a rough boundary (panel B), from
Robert (2008)

▶ The ocean floor is generally treated as impermeable boundary.

▶ The velocity normal to the ocean floor is set to zero.

▶ Similar to the air-sea boundary, the ocean floor also exerts a friction on the flow parallel to ocean flow. This
friction is often parameterized a quadratic or logarithmic friction laws.

▶ Bottom friction is crucial for tidal simulation.

▶ Prescribing the horizontal velocity components to zero is only a possibility if the bottom boundary layer is
well resolved.

▶ Analytical ocean models use in general a linear bottom drag not because it is more realistic, but because it
is much easier to obtain a analytical solution.

Exercise 6:

Explain why bottom friction is more important for simulating tides than for the general ocean circulation.

When a numerical ocean model is coupled to a sediment transport models, the bottom floor itself can vary in
time over sufficiently long time scales.

3.3. Lateral boundary condition

3.3.1. Coast line

Formally, the later boundary at the coastline is similar to the bottom boundary condition. The coastline is
generally treated as a wall. The velocity perpendicular to the coast-line is zero. Different options for the boundary
conditions for the flow parallel to the coast-line are possible:

▶ no-slip: The velocity tangent to the coastline is set to zero (if lateral boundary layer is resolved).

▶ lateral drag: Turbulent viscosity is prescribed at the coastline, for example proportional to the square of the
velocity (if later boundary layer is not resolved).

▶ free slip: The flow moves freely parallel to the coast (applicable if later boundary layer is much smaller than
the grid size such that its effect can be ignored).

Rivers represent a fresh-water flux into the model domain. They can be represented as a boundary condition
with prescribed salinity (and possibly temperature) and velocity. Rivers can also be modeled as a point source for

salinity (and temperature) in the evolution equation of the tracers.

For applications such as storm surge modeling, the coastline can move due to inundation and the retreat of
the water. Grid-cells can thus be either wet or dry. Special wetting and drying scheme have been developed
for these applications. The challenge of these methods is to provide a numerical stable and volume conserving
scheme.

3.3.2. Open-ocean boundary conditions

For high-resolution application, only a small portion of the global ocean can be covered. In these cases, it is
necessary to introduce boundary conditions at the open-sea boundary.

3.3.2.1. Dirichlet boundary conditions

The simplest open-ocean boundary condition is to prescribe the values of the model variables at the open boundary
(Dirichlet or clamped boundary conditions).

ϕ = ϕext at the open-boundary (3.10)

where ϕ is any model variable. This approach however is rarely used since it sufferers from several drawbacks:

▶ only in rare cases there are sufficient observations to provide ϕext (a larger-scale model is thus often used)

▶ waves approaching the open boundary are in general reflected at the open boundary

▶ if the external data is not compatible with the model results at the boundary (due to problems in the
model or in the external data) a spurious boundary layer is created with strong gradients. A strong spurious
density gradient generate a strong spurious geostrophic flow which exacerbate the problem and can lead to
numerical instabilities.

3.3.2.2. Radiation boundary conditions

To address the problem of wave reflection, the radiation boundary condition are constructed to let a wave propagate
freely out of the model domain:

∂ϕ

∂t
+ c

∂ϕ

∂n
= 0 (3.11)

where n is the dimension perpendicular to the open-boundary and c is the wave propagation speed. For the
Sommerfeld condition, c is constant and it must be determined a priori. Orlanski (1976) proposed a scheme where
the propagation speed is determined by the flow one grid point from the open boundary and at the previous time
step by:

c = −∂ϕ
∂t
/
∂ϕ

∂n
(3.12)

The method returns the correct propagation speed for a single wave (propagating at a constant speed) reach-
ing the boundary at normal incidence. But the scheme can be problematic if the solution contains several waves
at different propagation speed.

External data can be included in the radiation boundary condition by introducing an relaxation term.

∂ϕ

∂t
+ c

∂ϕ

∂n
=
ϕext − ϕ

τ
(3.13)

where τ is the relaxation time-scale. The smaller the relaxation time-scale, the stronger the model is forced
by the external data. The relaxation time-scale is in general adjusted to reflect the accuracy of the external data.

3.3.2.3. Flow relaxation

To allow a smoother transition between the external data and the model results, Davis (1976) introduced the
flow relaxation method: the relaxation term is not only active at the open-boundary but also in some zone near
the boundary. The relaxation is also added to the prognostic equations:

∂ϕ

∂t
+ ... =

ϕext − ϕ

τ(x, y)
(3.14)

The coefficient 1/τ(x, y) defines the flow relaxation zone and is only non-zero near the boundary.

3.3.2.4. Flather boundary condition

These previous boundary conditions do not take the dynamical relationship between the variables into account.
(Flather, 1976) proposed a boundary condition for the shallow water equations. The propagation of a surface
gravity wave approaching a boundary is described as:

∂η

∂t
+
√
gh
∂η

∂n
= 0 (3.15)

where h is the water depth. The 1-D approximation of the continuity equations can be written as:

∂η

∂t
+ h

∂v̄n
∂n

= 0 (3.16)

By subtracting the previous equations, one obtains

∂

∂n

(
v̄n −

√
g

h
η

)
= 0 (3.17)

By integrating this equations across the open boundary, one obtain the Flather-boundary condition:

v̄n −
√
g

h
η = v̄extn −

√
g

h
ηext (3.18)

The Flather boundary condition provides only one constrain for two variables (elevation and normal velocity).
The Flather boundary condition is often augmented by one of the boundary condition proposed by Chapman
(1985), such as:

ηn+1
b =

ηnb + µeη
n+1
b+1

1 + µe
(3.19)

where µe =
√
gh ∆t

∆xn
, b is the grid index of the model boundary, b+1 is the index of the first grid point inside

the model domain. This boundary condition can be obtained discretizing equations (3.15) using finite differences.

Concluding remarks for open boundaries:

▶ A more rigorous framework for deriving open boundary condition is the method of characteristics. The
linearized system of equations are transformed into a system of independent equations for the characteristics.
Each of these characteristics has its own propagation speed. The sign of the propagation speed at the
boundary determines if it is an incoming or out-coming characteristic. An interesting discussion can be
found in (Blayo and Debreu, 2005).

▶ An open-ocean boundary conditions for the primitive equations is a delicate task since they admit a broad
spectrum of waves. Barotropic waves are in general faster than the ocean currents (sub-critical regime)
while high order internal waves are slower than ocean currents (super-critical regime).

▶ The boundary condition play also a crucial role in model nesting: a coarse-grid model provides boundary
condition of a fine-grid model. In one-way nesting, the coarse-grid model is independent of the fine-grid
model. If in turn, the fine-grid model results are incorporated into the coarse-grid model one speaks of
two-way nesting.

3.3.2.5. Model nesting

Figure 3.2: Example of 1-way nesting of ROMS in HYCOM (Barth et al., 2008). Animation

A
?

B
?
C
?

D
?

E
?

•

•

•

•

•

•

•

•

•

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

>

>

>

>

>

>

>

>

>

>

>

>

•

•

•

•

•

•

•

•

•

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

>

>

>

>

>

>

>

>

>

Figure 3.3: The relative position of the coarse (thick lines) and fine grid (fine lines). The dots (•) show the
position of scalar variables, > the zonal velocity and ∧ the meridional velocity component. The large symbols are
associated to the coarse grid and the small symbols to the fine grid. For clarity, only the position of the variables
imposed by boundary conditions are showed for the fine grid. The boundary conditions of the scalars and the
tangent (to the nesting boundary) velocities interpolated from columns A and D are imposed in column B. The
normal velocity component is imposed in column C. The average values of the scalars and the tangent velocities
are injected in the coarse grid model, starting with column D. For the normal velocity, the feedback begins with
column E (Barth et al., 2005).

lon.

la
t.

 6oE 7oE 8oE 9oE 10oE 11oE

 30’

 43oN

 30’

 44oN

 30’

50
0

500

50
0

50
0

20
00

20
00

 Marseille

Nice

Capo RossoCapo Rosso

Corsica

 Corsica Channel Corsica Channel

 NC

WCC

 ECC ECC

ITALY

FRANCE

A
B C

 D

Figure 3.4: The Ligurian Sea with the three major currents: ECC, WCC and NC. The results of the model will
be illustrated in section C. The solid line represents the interface between the fine and intermediate grid resolution
models. The 500 m and 2000 m isobaths are also shown. While the bathymetry in the Ligurian Sea is rather
steep at the French coast, there is a continental shelf in the western part near the Italian coast. The Corsica
Channel separates this plateau from the Corsica Island.

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Mean, 1/60° model, 2−way nested

13
.1

13.113.2
13.3

13.4

13.4

a

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Mean, 1/60° model, 1−way nested

13
.1

13.2
13.3

13.4
c

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Mean, 1/20° model, 1−way nested

13.1

13.113.2
13.3 13.4

e

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Standard deviation, 1/60° model, 2−way nested

0.1
0.1 0.20.2

0.2

b

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Standard deviation, 1/60° model, 1−way nested

0.1 0.1

0.
1

0.20.2

0.2

d

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Standard deviation, 1/20° model, 1−way nested

0.1

0.1 0.2

f

Figure 3.5: Mean temperature and standard deviation (in °C) at section C of figure 3.4 for the two-way (top)
and the one-way nested model at 1/60° resolution (centre). The two bottom figures are the results of the 1/20°
model for the one-way nesting strategy.

Chapter 4

Model grids

Contents
4.1 Vertical coordinate . 46

4.1.1 General coordinate transformation . 48

4.1.2 z-coordinate . 57

4.1.3 σ-coordinate . 59

4.1.4 Isopycnals . 66

4.2 Horizontal grid . 67

4.2.1 Structured mesh . 67

4.2.2 Grid staggering . 74

4.2.3 Unstructured mesh . 78

4.3 Time stepping . 82

▶ For a stratified fluid such as the ocean, the representation of gravity is crucial.

▶ In the vast majority in ocean models, the model grid lines are vertically aligned because of the the dominance
of later versus vertical transport and hydrostatic balance.

▶ The horizontal and vertical grid are therefore be considered separately as two successive steps to generate
the tri-dimensional model grid.

4.1. Vertical coordinate

The choice of vertical coordinate system is the single most important aspect of an ocean model’s design (Chas-
signet and Malanotte-Rizzoli, 2000; Chassignet et al., 2000).

Different regimes are found in the vertical that a numerical ocean model has to simulated and a vertical
coordinate has to resolve:

▶ Surface mixed layer: higher resolution near the surface is necessary to represent air-sea heat, fresh-water
and momentum flux. Intense turbulent mixing and non-hydrostatic convection takes place in this weakly
stratified layer. Those processes are in general parameterized. The currents in this layer are strong affected
by the wind stress (surface Ekman layer). Below this layer, large temperature and salinity variation are in
general observed (thermocline and halocline)

▶ Ocean interior: this part of the water column is in general well stratified. This stratification constrain the
movement of tracers along direction of constant density. Water mass properties are thus maintained over
very long time scales.

▶ Ocean bottom: bottom boundary layer exert friction on the overlying fluid. This is especially important for
shallow areas. In some places, dense water masses flows down along the ocean floor. These overflows are

crucial in the formation of deep water. The bottom depth (i.e. the geometry of the basin) itself is also very
important since the flow tends to follow lines of constant f/H (under unstratified conditions).

Figure 4.1: Vertical section of the WFS ROMS model (http://ocgmod1.marine.usf.edu/WFS)

http://ocgmod1.marine.usf.edu/WFS

4.1.1. General coordinate transformation

The easiest way to discretize the water column is to use the depth. But this is only one possibility. First, we
examine the general coordinate system transformation (x, y, z, t) → (x′, y′, z′, t′):

x′ = x (4.1)

y′ = y (4.2)

z′ = z′(x, y, z, t) (4.3)

t′ = t (4.4)

The transformed variable z′ may vary not only in space but also with time. This transformations is only
invertible if z′ is a uniformly increasing or decreasing function of z. We need now to express the primitive
equations in the transformed coordinate system. Following equation (B.12) of appendix B, the derivative are
transformed as:

∂f

∂x
=

∂f

∂x′
+
∂f

∂z′
∂z′

∂x
(4.5)

∂f

∂y
=

∂f

∂y′
+
∂f

∂z′
∂z′

∂y
(4.6)

∂f

∂z
=

∂f

∂z′
∂z′

∂z
(4.7)

∂f

∂t
=

∂f

∂t′
+
∂f

∂z′
∂z′

∂t
(4.8)

The derivative in x is not simply equal to the derivative in x′. Indeed, the derivative in x is taken for constant z
while the derivative in x′ is taken along constant z′. Since z′ may depend on x, both are not necessarily equal.
Note also the similarity in the transforming of the derivatives in x, y and t.

A central quantity in coordinate transformation is the Jacobian. The Jacobian of this transformation is

J =
∂z

∂z′
(4.9)

The Jacobian corresponds to the local stretching of the new coordinate system relative to the old coordinate
system.

The material derivative is often used to express the primitive equations. In cartesian coordinate, it is defined
by:

df

dt
=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
(4.10)

In the transformed coordinate, the material derivative becomes:

df

dt
=
∂f

∂t′
+ u

∂f

∂x′
+ v

∂f

∂y′
+ ω

∂f

∂z′
(4.11)

where ω is defined by:

ω =
∂z′

∂t
+ u

∂z′

∂x
+ v

∂z′

∂y
+ w

∂z′

∂z
(4.12)

The first three terms of the rhs (right hand side) of the previous equations correspond to the material derivative
of the surfaces of constant z′. Jω is thus the movement of the fluid relative to the surfaces of constant z′

The volume conservations

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (4.13)

becomes (appending C)

∂J

∂t′
+

∂

∂x′
(Ju) +

∂

∂y′
(Jv) +

∂

∂z′
(Jω) = 0 (4.14)

with the volume conservation, the material derivative for a scalar f multiplied by the Jacobian J can be
expressed in the following flux conservative form:

J
df

dt
= J

(
∂f

∂t′
+ u

∂f

∂x′
+ v

∂f

∂y′
+ ω

∂f

∂z′

)
=

∂

∂t′
(Jf) +

∂

∂x′
(Jfu) +

∂

∂y′
(Jfv) +

∂

∂z′
(Jfω) (4.15)

Numerical models are generally based on the flux form of the evolution equations since they lead more easily
to conservative schemes. The advection terms are formally similar to their expression in Cartesian coordinates
where tracer f is replaced by Jf . The Jacobian takes into account that the real volume of a model grid cell varies
in space and time.

The appearance of the Jacobian J to express the material derivative in conservative form is not surprising,
since it is also necessary to perform integration in a different coordinate system:∫

Ω

f(x, y, z) dxdy dz =

∫
Ω′
f(x′, y′, z′) J dx′ dy′ dz′ (4.16)

The equations governing the evolution of a tracers includes beside advection also the diffusion. The vertical
diffusion in the transformed space would give:

∂

∂z

(
ν
∂f

∂z

)
=

1

J

∂

∂z′

(
ν

J

∂f

∂z′

)
(4.17)

The horizontal velocity components, the advection and diffusion terms are similar to those of tracer. The
Corilois and buoyancy terms do not contain a spatial derivative. Thus they are not changed by the coordinate
transformation. The remain term to complete the momentum equation is in the pressure gradient. The x-
component of the pressure gradient becomes:

∂p

∂x
=

∂p

∂x′
+
∂p

∂z′
∂z′

∂x
(4.18)

The pressure gradient is thus the sum of two components. If the pressure is only a function of z (as it is
approximatiely the case in the ocean), the horizontal pressure gradient is zero and both terms should cancel out
each other. This is in general not the case for the descretized pressure gradient. The residual pressure gradient
drives a spurious current. This is the so called pressure gradient problem (e.g Haney, 1991; Deleersnijder and
Beckers, 1992).

−5 0 5

x 10
4

−1000

−500

0
Density

1030

1035

1040

1045

−4 −2 0 2 4

x 10
4

−800

−600

−400

−200

0
Pressure gradient

−0.01

−0.005

0

0.005

0.01

−4 −2 0 2 4

x 10
4

−800

−600

−400

−200

0
Pressure gradient along sigma

−200

0

200

−4 −2 0 2 4

x 10
4

−800

−600

−400

−200

0
Pressure gradient due to tilting

−200

0

200

Figure 4.2: “Naive” pressure gradient discretization for the sea mount problem

Figure 4.3: Sea mount test-case with ROMS using the spline density Jacobian formulation by Shchepetkin and
McWilliams (2003). Animation of the sea mount simulation.

The vertical variation of pressure are known because of the hydrostatic equilibirum:

∂p

∂z
=

1

J

∂p

∂z′
= −ρg (4.19)

The pressure gradient in transformed coordinate can thus be written as:

∂p

∂x
=

∂p

∂x′
− ρgJ

∂z′

∂x
(4.20)

=
∂p

∂x′
+ ρg

∂z

∂x′
(4.21)

since

∂z′

∂x
= −∂z

′

∂z

∂z

∂x′
(4.22)

= − 1

J

∂z

∂x′
(4.23)

The pressure gradient (equation 4.21) can further be transformed into:

∂p

∂x
=

∂p

∂x′
+ ρ

∂gz

∂x′
+ gz

∂ρ

∂x′
− gz

∂ρ

∂x′
(4.24)

=
∂P

∂x′
− gz

∂ρ

∂x′
(4.25)

where P = p+ ρgz is the Montgomery potential.

The pressure gradient can be interpreted as the gradient of the pressure obtained by vertical interpolated of the
pressure of the neighboring cells (figure 4.1.1). However, if the slope of the grid-lines increases, the interpolated

can become an extrapolation. The depth at which the vertical pressure gradient is evaluated is in this case no
longer consistent with the depth of the horizontal pressure gradient. This problem is called hydrostatic consistency.∣∣∣∣∣ ∂x

′

∂z
∂z′

∂z

∣∣∣∣∣ ≤ ∆z′

∆x
(4.26)

To reduce the pressure gradient problem, it is thus not sufficient to increase the vertical resolution alone.
Hydrostatic consistency requires that vertical and horizontal resolution are refined.

x, y

z pressure gradient

pressure
interpolated pressure

pressure is
vertically interpolated

pressure is
vertically extrapolated

Figure 4.4: Horizontal pressure gradient and hydrostatic consistency

4.1.2. z-coordinate

For model using the z-coordinate, the depth of each model levels depends only on z.
Advantages:

▶ simple numerical discretization and visualization and interpretation of model results

▶ surface mixed layer can be naturally represented and resolved pressure gradient

Disadvantages:

▶ ignore small bottom slope. This leads to problem in representing potential vorticity variations

▶ unrealistic mixing for bottom flow (bottom boundary layer)

▶ later mixing and advection along constant-density surfaces is cumbersome and need a high number of vertical
levels to adequately resolve those processes. These model have in general a unrealistic large cross-isopycnal
mixing.

Improvements of the z-coordinate to include a better representation of the bottom topography (Adcroft et al.,
1997):

▶ Partial cell approach. The lowest grid cell can have a thickness that is a function of latitude and longitude.
The depth of a water column is no longer restricted to finite set of representable water depth.

▶ Shaved cells: The bottom grid cell is no longer a cuboid. The depth of all bottom vertexes are allowed to
follow the bottom topography. Shaved cells are thus more realistic than partial cells, however they shaved
are numerically less efficient that partial cells.

Figure 4.5: Different representation of the ocean floor in z-coordinate ocean models: the traditional full-cell
approach (top), partial cells (middle) and shaved cells (bottom). This figure is based on figure 3 from (Griffies
et al., 2000).

4.1.3. σ-coordinate

The σ-coordinate is defined by:

σ =
z − η

H + η
(4.27)

or

z = η + (H + η)σ (4.28)

for surface z = η −→ σ = 0
for bottom z = −H −→ σ = −1

With a vertical stretching function C(σ):

z = η + (H + η)C(σ) (4.29)

C(σ) is a function that defines the vertical grid spacing:

▶ at the free-surface: C(0) = 0

▶ at the bottom C(−1) = −1.

Example of a stretching function (Song and Haidvogel, 1994):

C(σ) = (1− θB)
sinh(θS σ)

sinh θS
+ θB

[
tanh[θS(σ + 1

2)]

2 tanh(12θS)
− 1

2

]
where the parameters θS and θB control the surface and bottom streching.
Advantages:

▶ Realistic representation of the ocean bottom

▶ Well suited for shallow water

▶ all vertical levels are actually used (z-coordinate level run into the bottom floor and the depth of isopycnal
become zero is a density level is not present).

Disadvantages:

▶ The resolution of the surface mixed layer varies according to the water depth. To resolve the mixing layer in
deep, a very fine discretization of σ is necessary. To distribute the surface layer more uniformly, a so-called
s-coordinate is introduced (Song and Haidvogel, 1994; Shchepetkin and McWilliams, 2005) which is defined
using the σ-coordinate by (for a flat surface η = 0):

z′(x, y, σ) = σhmin + C(σ) (H(x, y)− hmin) (4.30)

▶ In general (η ̸= 0):

z′(x, y, σ, t) = S(x, y, σ) + η(x, y, t)

[
1 +

S′(x, y, σ)

H(x, y)

]
, (4.31)

S′(x, y, σ) = σhmin + C(σ) (H(x, y)− hmin) (4.32)

▶ Another approach, implemented in e.g. ROMS, is:

z′′(x, y, σ, t) = η(x, y, t) + [η(x, y, t) +H(x, y)] S′′(x, y, σ), (4.33)

S′′(x, y, σ) =
hmin σ +H(x, y)C(σ)

hmin +H(x, y)
(4.34)

0 2 4 6 8 10

-140

-120

-100

-80

-60

-40

-20

0

z

0 2 4 6 8 10

-140

-120

-100

-80

-60

-40

-20

0

sigma

Figure 4.6: z and σ coordinate. The solid black line represent the real bottom floor, gray cells are masked cells
and blue model grid.

0 1 2 3

-140

-120

-100

-80

-60

-40

-20

0

20

sigma coordinate and surf. gravity. wave

4 5 6 7 8 9 10

Figure 4.7: Since the σ-levels depend on elevation, the depth vary in time. Animation of a surface gravity wave
and the movement of the coordinate system.

-140

-120

-100

-80

-60

-40

0 2 4 6 8 10

-140

0 2 4 6 8 10

sigma

-20

0

-40

-60

-80

-100

-120

-20

0

s

Figure 4.8: σ and s coordinate

▶ z′ and z′′ become the regular sigma-coordinate for hmin = 0

▶ It is difficult to align advection and diffusion along inclined density surfaces in the ocean interior

▶ pressure gradient error: The pressure gradient error is a problem near steep topography, in particular at the
shelf break. Smoothing of the bathymetry is often required. The problem can be address with the double-
sigma coordinate Beckers (1991): the domain is divided in a upper and lower region at the approximate
mean depth of the shelf-break and a sigma coordinate transformation is realized in both regions.

▶ Advection and diffusion along constant density surfaces is difficult.

5 10 15 20 25 30 35 40 45 50 55 60 65 70

-1800

-1500

-1200

-900

-600

-300

Figure 4.9: The double-sigma coordinate: a first sigma coordinate covers the first 170 m and a second sigma
coordinate goes from 170 m down to the ocean floor.

4.1.4. Isopycnals

This coordinate is a close analog to the atmosphere’s entropy or potential temperature. The levels are choosen
such that the density of each level is a constant.

Advantage:

▶ in the ocean interior, tracers have the tendency to move along isopycnal surface. The isopycnal coordinate
is thus well suite for this transport.

▶ these models follow the bottom topography

▶ overflow can be represented more realistically than in z-models

▶ horizontal pressure gradient can be easily represented using the Montgomery potential (4.25).

Disadvantages:

▶ In unstratified conditions, such as surface and bottom boundary and during deep water formation, density
is inappropriate to provide sufficient vertical resolution.

▶ The range of densities can vary from sub-basin to another. It might be necessary to add density layer for a
small sub-basin which are not used at other places.

Exercise 7:

Compute and plot z, σ and isopycnal levels of a meridional section at 24 deg W in the Atlantic. Try
to choose an appropriate resolution which resolves sufficiently the mixed layer. You may use the annual
temperature and salinity mean of World Ocean Atlas 2005 to compute the density (available here).

http://modb.oce.ulg.ac.be/mediawiki/index.php/Structure_and_application_of_numerical_ocean_models

4.2. Horizontal grid

4.2.1. Structured mesh

4.2.1.1. Cartesian mesh

If only a limited portion of the earth is considered, then the curvature of the earth can be neglected. The
differential operator have the simplest possible form in Cartesian coordinates.

Exercise 8:

Create a model grid and the model bathymetry of the western part of the Mediterranean at 1/4 degree
based on the ETOPO5 bathymetry. Choose an appropriate position of the open boundary. Would it be
better to sub-sample the bathymetry or average the bathymetry over 1/4 degree boxes?

4.2.1.2. Spherical mesh

For a spherical mesh, the domain is discretized along longitude and latitude lines. The longitude increments are
normally chosen constant. The latitude increments sometimes also chosen to be constant. In this case, the grid
cells corresponds to squares at the equator and become more and more elongated rectangles ones approaches the
poles. To obtaine grid cells which corresponds locally to squares everywhere, the latitude increment ∆λ is equal
to:

∆λ = ∆ϕ cos(λ) (4.35)

where λ is the latitude and ∆ϕ is the longitude increment. Due to the similarity to the Mercator projection,
this grid is also called a Mercator grid. In any case, the convergence of the meridians at the poles require a very
small time step. This problem can be circumverted by rotating pole to land.

-5 0 5 10 15 20 25 30 35

32

34

36

38

40

42

44

500 1000 1500 2000 2500 3000 3500

Figure 4.10: 1/4 degree grid of the Mediterranean Sea and model bathymetry.

Figure 4.11: Example of a global spherical mesh including bathymetry at 1 degree resolution. Only every ten grid
line if shown.

4.2.1.3. Generalized orthogonal mesh

The curvilinear grid is defined as a change of coordinate system:

ξ = ξ(x, y) (4.36)

η = η(x, y) (4.37)

This change of coordinate system is assumed to be invertible:

x = x(ξ, η) (4.38)

y = y(ξ, η) (4.39)

Essential quantities to describe the local characteristics of the curvilinear grids are the scale factors m and n.

(ds)ξ =
1

m
dξ (4.40)

(ds)η =
1

n
dη (4.41)

where ds is the distance between two points at constant ξ or at constant η. If (x, y) are the Cartesian
coordinates on a plane, the scale factors m and n are:

1

m2
=

(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

(4.42)

1

n2
=

(
∂x

∂η

)2

+

(
∂y

∂η

)2

(4.43)

-90 -89 -88 -87 -86 -85 -84 -83 -82 -81

25

26

27

28

29

30

0

500

1000

1500

2000

2500

3000

Figure 4.12: Example of a curvilinear mesh of the West Florida Shelf. Only one grid line of 4 is shown.

The derivative in the transformed coordinate system are related to the original derivative by:

∂

∂ξ
=

∂x

∂ξ

∂

∂x
+
∂y

∂ξ

∂

∂y
(4.44)

∂

∂η
=

∂x

∂η

∂

∂x
+
∂y

∂η

∂

∂y
(4.45)

Vectors are locally rotated according to:

eξ =
∂x

∂ξ
ex +

∂y

∂ξ
ey (4.46)

eη =
∂x

∂η
ex +

∂y

∂η
ey (4.47)

Those vectors are assumed to be orthogonal:

eξ · eη = 0 =
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η
(4.48)

Jacobian of the change of coordinate system can be written as:

J =
∂(x, y)

∂(η, ξ)
=
∂x

∂η

∂y

∂ξ
− ∂x

∂ξ

∂y

∂η
=

1

mn
(4.49)

indeed after some calculations one obtains,

J2 =
∂x

∂η

2 ∂y

∂ξ

2

− 2
∂x

∂η

∂x

∂ξ

∂y

∂η

∂y

∂ξ
+
∂x

∂ξ

∂y

∂η
(4.50)

=
∂x

∂η

2 ∂y

∂ξ

2

+
∂x

∂η

2 ∂x

∂ξ

2

+
∂y

∂η

2 ∂y

∂ξ

2

+
∂x

∂ξ

2 ∂y

∂η

2

(4.51)

=

(
∂x

∂η

2

+
∂y

∂η

2)(∂x
∂ξ

2

+
∂y

∂ξ

2)
(4.52)

=
1

m2n2
(4.53)

The velocity in the curvilinear coordinate system (u, v) is obtained from the velocity in the Cartesian system
by:

u =
∂x

∂ξ
vx +

∂y

∂ξ
vy (4.54)

v =
∂x

∂η
vx +

∂y

∂η
vy (4.55)

To express the dynamical equations using the variables for the curvilinear system, one need to substitute the
variables of the old coordinate system by the transformed one. For the derivative, one obtains,

∂

∂x
= mn

∂y

∂η

∂

∂ξ
−mn

∂y

∂ξ

∂

∂η
(4.56)

∂

∂y
= −mn∂x

∂η

∂

∂ξ
+mn

∂x

∂ξ

∂

∂η
(4.57)

and the velocity

vx = mn
∂y

∂η
u−mn

∂y

∂ξ
v (4.58)

vy = −mn∂x
∂η
u+mn

∂x

∂ξ
v (4.59)

For example the advection of a tracer is written as:

vx
∂

∂x
T + vy

∂

∂y
T = m2n2(

∂y

∂η
u− ∂y

∂ξ
v)(

∂y

∂η

∂

∂ξ
− ∂y

∂ξ

∂

∂η
T) (4.60)

+m2n2(−∂x
∂η
u+

∂x

∂ξ
v)(−∂x

∂η

∂

∂ξ
T +

∂x

∂ξ

∂

∂η
T) (4.61)

= m2u
∂

∂η
T + n2v

∂

∂ξ
T (4.62)

Because the transformed coordinate system is locally orthogonal, the differential operator can be written in a
compact form similar to the Cartesian system. The essential difference if the appearance of the factor m and n.
For example the Laplacian can be written as:

∇2ϕ = mn
∂

∂ξ

(
m

n

∂

∂ξ
ϕ

)
+mn

∂

∂η

(
n

m

∂

∂η
ϕ

)
(4.63)

4.2.2. Grid staggering

By placing variables at different location, the accuracy of the discretization scheme can be improved (Arakawa,
1966; Arakawa and Lamb, 1981).

If variables are necessary on other location, spatial average (which amount to interpolation) is necessary. Since
spatial averaging smoothes the solution, it introduces numerical diffusion. Some scheme with spatial have also

numerical modes with a structure of a check-board. In the averaged field, the high frequency structure disappears
and there is thus no dynamical feedback to dissipate the check-board pattern. For example, the 1 dimensional
shallow water equations on a unstaggered grid:

ηn+1 − η

∆t
= −Hui+1 − ui−1

2∆x
(4.64)

un+1 − u

∆t
= −g

ηn+1
i+1 − ηn+1

i−1

2∆x
(4.65)

The rhs are finite differences over 2∆x. These terms can also be viewed as differences over ∆x of averaged
values. These admit the following as a stationary solution:

η = Aeiπi (4.66)

u = Beiπi (4.67)

The sign of the elevation and velocity changes every grid point. In general a numerical scheme and a grid is
sought which minimizes the need of spatial averaging.

unstaggered staggered
u

T

Figure 4.13: Staggering of variables in 1 dimensions

Exercise 9:

Discretize the 1D linear shallow water equations on a staggered grid with a wall at x = 0 and x = L.
Determine and stability criterion and solve the discretized equations numerically.

∂h

∂t
= −∂hu

∂x
(4.68)

∂u

∂t
= −g ∂h

∂x
(4.69)

where h is 30 m. The domain is 100 km (L) long and discretized with 100 grid points. The average depth
(h) is 30 m and the initial h given by:

h(x) = h+ a exp(−(x/b)2) (4.70)

where a = 2 m and b = 5 km. The fluid is initially at rest.

(Partial answer), the numerical scheme is given by:

h
(n+1)
i = h

(n)
i −∆th

u
(n)
i+1/2 − u

(n)
i−1/2

∆x
(4.71)

u
(n+1)
i+1/2 = u

(n)
i+1/2 −∆tg

h
(n+1)
i+1 − h

(n+1)
i

∆x
(4.72)

where i the spatial index, n is the temporal index, ∆x is the grid spacing and ∆t is the time step. Stability
analysis is provided in appendix E.

Alternative exercise, solve:
∂T

∂t
= c

∂2T

∂x2

T
(n+1)
i = T

(n)
i + c∆t

T
(n)
i+1 − 2T

(n)
i + T

(n)
i−1

∆x2
(4.73)

(4.74)

for T (x) = a exp(−(x/b)2) for the same parameters and domain as before and c = 0.1 m2/s. Try to find the
largest time step, that still give stable results.

Arakawa (1966) introduced several ways to place the variables of the primitive equations on a two dimensional
grids (figure 4.2.2. The variables u and v corresponds to the horizontal velocity and tracer flux components. T
are the tracers (temperature, salinity, turbulent kinetic energy, concentration of biological and chemical tracers)
and sea surface height. variable ϕ represent the location of barotropic stream function.

Most common grids are B and C. Numerous authors have compared the merit of the different grid under
different conditions:

▶ in B grid, the Coriolis force can be easily represented while the C grid requires spatial averaging for this
term. Geostrophy is thus well represented on a B grid.

▶ at coarse resolution inertia-gravity waves are better represented on a B than a C grid, at fine resolution the
C grid is better than the B grid (Arakawa and Lamb, 1977; Hsieh et al., 1983; Beckers and Deleersnijder,
1993).

▶ B grid is better for Rossby-waves (resolved and under-resolved) because of their superior representation of
the Coriolis force (Dukowicz, 1995).

▶ C grid has a better representation of the Energy cascade with baroclinic eddies (Janjić, 1984).

4.2.3. Unstructured mesh

Most ocean models use currently structured grids. However, recently numerical ocean model using unstructured
grids are developed. With unstructured meshes the smallest resolved scale varies in general of the model domain.

Advantages:

▶ very flexible to represent complex coastline and other isobaths

▶ increased resolution in zones of interest

▶ finite volume or finite elements

Disadvantages:

▶ Difficulty to represent the geostrophic balance correctly

▶ Unphysical wave scattering when the resolution changes abruptly

A B C

D E
u
v
T

Figure 4.14: Location of variables in staggered Arakawa A, B, C, D and E grid.

Figure 4.15: Example of an unstructured mesh. Image from Applied Mechanics Division at UCL.

Exercise 10:

Consider the linear shallow water equation in a 1d-domain bounded by two coastal walls.

∂η

∂t
= −∂U

∂x
(4.75)

∂U

∂t
= −gh∂η

∂x
(4.76)

Between 0 and L1 the domain is discretized with a resolution ∆x = 1 km and between L1 and L2 with a
coarser resolution of r∆x. The initial surface elevation is given by:

η(x) = A exp
(
−x2/L2

)
(4.77)

where h = 500 m, L1 = 200 km, L2 = 400 km, ∆t = 10 s and A = 1 m. The velocity is initially
zero. Integrate the equation forward until the (main) perturbation reached x = 300 km. At this moment
integrate the wave energy over the first half of the domain:

E(t) =

∫ L1

0

gη(x, t)2 +
U(x, t)2

h
dx (4.78)

▶ Carry out the experiment for different value for r = 2, 3 and 5 and L = 4 km, 10 km and 20 km.

▶ Describe what happen at x = L1 and why.

▶ Explain the dependence of E on r and L.

4.3. Time stepping

Time stepping is the temporal equivalent of the spatial coordinates and grid staggering. The primitive equations
admit a range of wave-like solution with a broad spectrum of possible propagation speed. For example surface
gravity waves have a propagation speed of

√
gH (about 100 m/s for 1000 m deep ocean) and Rossby waves

(c = −β/k2) These waves are produced in barotropic, baroclinic, and thermodynamic adjustment processes and
the time-scale of these processes is related to the corresponding wave propagation speed. Each of those wave
like solution introduce a stability criterion which is increasingly severe for faster waves. To reduce computational
cost, a different time steps for various equations is often used (Bryan, 1969b,a). The barotropic variables (surface
elevation and depth averaged current), the baroclinic velocity and the tracer can thus be integrated with different
time steps.

Exercise 11:

Discretize the linear two-layer model on a staggered grid with a wall at x = 0 and x = L.

∂hk
∂t

= −∂hkuk
∂x

(4.79)

∂uk
∂t

= − 1

ρk

∂pk
∂x

(4.80)

for k = 1 and k = 2 and where the pressure for each level is given by:

p1 = ρ1g(h1 + h2 −H) (4.81)

p2 = ρ1(gh1 + (g + g′)(h2 −H)) (4.82)

where H = h1 + h2 and g′ = ρ2−ρ1

ρ1
g. Initially the velocity is zero and h1 and h2 are given by:

h1 = A1 exp(−x2/L′2) + h1 (4.83)

h2 = A2 exp(−x2/L′2) + h2 (4.84)

where A1 = 40 m, A2 = −30 m, L = 100 km, L′ = 20 km, ρ1 = 1020 kgm−3, ρ2 = 1035 kgm−3, and
h1 = h2 = 50 m.
Hint: Use the pressure at time step n+ 1 to compute the velocity at this time step.

▶ Draw h2 as a function of time and space and describe it

▶ Determine graphically the propagation speeds and compare it to the theoretical values

▶ Repeat the simulation with ρ1 = 1000 kgm−3, and ρ1 = 1035 kgm−3 and explain the changes
relative to the first simulation in physical terms.

The dynamics of a stratified fluid can be decomposed vertically in orthogonal eigenmodes (Gill, 1982). The first
mode is called the barotropic mode and all higher modes are called baroclinic modes. In practice the barotropic
mode is obtained by depth averaging.

The barotropic mode contains the fast moving surface gravity waves and the slow moving planetary and
topographic Rossby waves (or the geostrophic equilibrium for a flow ocean with constant f). The fast moving
surface gravity waves can handled in different ways:

▶ Explicit free surface models: Barotropic shallow water equations are solved with a small time step (according
to the CFL condition for the surface gravity waves)

▶ The surface gravity waves are removed by the altogether with the rigid lid approximation. However, this
means that:

• need to solve an elliptic problem for the stream function ϕ or surface pressure. Direct solution of the
elliptic problem is only feasible for smaller problem.s For an iterative elliptic solver, it is difficult to
achieve convergence in a reasonable number of iteration.

• Not possible to add/remove water (due to river or precipitation/evaporation). Freshwater flux is
treated as a virtual salinity flux.

• rigid lit approximation modifies also the dispersion relation of Rossby waves

• no tides

The rigid lid method is becoming obsolete even for ocean climate modeling (Griffies et al., 2000).

▶ Implicit free surface models: implicit methods admit large time-step, but not resolving the barotropic
dynamics. Still need to solve an elliptic problem.

Only local boundary conditions are needed for explicit free surface models while implicit and rigid lid approaches
require non-local boundary conditions. The free surface is more easier to implement for σ and isopycnal models
than for z-models, since the model cells in a z-grid might be partially empty. Also free surface models are more
efficient on a parallel computer.

0 10 20 30 40 50 60 70 80 90 100

x (km)

-100

-80

-60

-40

-20

0

20

Figure 4.16: Snapshot of the simulation

0 10 20 30 40 50 60 70 80 90 100

space (km)

0

0.2

0.4

0.6

0.8

1

1.2

ti
m

e
 (

d
)

20

25

30

35

40

45

50

Figure 4.17: Hovmöller Diagram of h2 showing the propagation of the external and internal waves

Chapter 5

Solving model equations on a grid

Contents
5.1 Finite difference . 88

5.2 Finite volume . 90

5.3 Finite elements . 91

5.4 Spectral methods . 94

The purpose of this chapter is to review main methods to discretize a partial differential equations to resolve
it numerically. The methods are illustrated with the 1D advection equations:

∂u

∂t
+ c

∂u

∂x
= 0 (5.1)

All discretization method take only into account a certain range of scales. Larger scale should be taken into
account as boundary conditions and smaller scales have to be parameterized.

5.1. Finite difference

The continuous function is function u is sampled at discrete locations (xj , tn) = (∆xj,∆tn) where j and n are
integers. The derivative of the partial differential equations are approximated by finite differences:

un+1
j − unj

∆t
+ c

unj+1 − unj−1

2∆x
= 0 (5.2)

The dipsersion relation of this numerical scheme is determined by assuming a wave-like solution:

unj = A exp(i(k∆xj − ω∆tn)) (5.3)

which leads to:

exp(−iω∆t) + i
c∆t

∆x
sin(k∆x) = 0 (5.4)

The dispersion relation is thus,

ω = tan−1(C sin(k∆x)) +
i

2
ln
(
1 + C2 sin2(k∆x)

)
(5.5)

where C = c∆t
∆x . The angular frequency has an imaginary part which is always larger than 1. The scheme is

thus unconditionally unstable. In general, there is no guarantee that a partial differential equation solved by the
finite difference approach is stable. The only way to find out is by applying a stability analysis.

In equations (5.2), the spatial derivative was treated differently that the temporal derivative. The leap-frog
scheme discretizes both derivative in a symmetric way.

un+1
j − un−1

j

2∆t
+ c

unj−1 − unj−1

2∆x
= 0 (5.6)

It can be shown that this scheme is conditionally stable if C < 1. However, this scheme suffers from other
issues:

▶ it requires two initial condition at two successive time steps

▶ it requires an unphysical downstream boundary condition

▶ it admits a spurious numerical mode as solution

Exercise 12:

An additional relaxation term if often included in numerical models to avoid unrealistic drifts due to e.g.
systematic error in the heat flux. This term “nudges” the model towards a reference state such as a
climatology or observations. Study the evolution equations of temperature where only this relaxation is
term present:

∂T

∂t
=

1

τ
(T e − T) (5.7)

where τ = 1 month and T (0) = 10°C.

▶ For T e = 20°C. Solve this equations analytically and numercially using an Euler-forward scheme.
Integrate this equations for 3 years with a suitably chosen time step.

▶ For T e = A+B cos(ωt) where A = 20°C, B = 5°C and the period of the cosine is one year. Solve
this equation numerically and discuss the phase difference between T and T e.

▶ Can you think of others processes (possibly in other fields) which are similar to the nudging terms?

Exercise 13:

Using the sea-surface height in NetCDF file ssh 20071127.nc compute the corresponding surface
geostrophic current by finite difference.

5.2. Finite volume

The partial differential equation is written in flux form:

∂u

∂t
+
∂q

∂x
= 0 (5.8)

q = cu (5.9)

The partial differential equations are integrated over a finite volume:∫ (j+1/2)∆x

(j−1/2)∆x

∂u

∂t
+
∂q

∂x
dx = 0 (5.10)

∆x
∂uj
∂t

+ qj+1/2 − qj−1/2 = 0 (5.11)

where uj represents the average over the grid cell and qj+1/2 is the flux at the interface:

uj =
1

∆x

∫ (j+1/2)∆x

(j−1/2)∆x

udx (5.12)

qj+1/2 = q((j + 1/2)∆x) (5.13)

For the upwind-scheme, the flux is given by:

qj+1/2 = cuj if c ≥ 0 (5.14)

= cuj−1 if c < 0 (5.15)

The time derivative can be discetized by using an Euler forward step:

un+1
j = unj +

∆t

∆x
(qj+1/2 − qj−1/2) (5.16)

This numerical scheme could also be obtained by the finite difference approach. For simple partial differential
equations, it is common that the finite difference approach and the finite volume approach yield the same numer-
ical scheme, but for more complex partial differential equations this is in general not the case.

This method does not required that the finite volumes are rectangular. Indeed, some numerical ocean models
apply the finite volume approach to unstructured triangular meshes.

5.3. Finite elements

The solution is projected into a series of (non-orthogonal) functions which are only non-zero over a given element

u∗ =

N∑
i=0

ui(t)ϕi(x) (5.17)

The basis function ϕi are defined by:

ϕi =
1

h
(x− (i− 1)h) (i− 1)h ≤ x ≤ ih (5.18)

=
1

h
((i+ 1)h− x) ih ≤ x ≤ (i+ 1)h (5.19)

= 0 otherwise (5.20)

where i = 1, . . . , N .

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Figure 5.1: The shape of function ϕi for i = 1 and h = 1

In general, there are no coefficients ui(t) such that the function u∗ satisfies equations (5.1) exactly. There
will be a residual, noted r.

∂u∗

∂t
+ c

∂u∗

∂x
= r (5.21)

However, we want that the residual should be “as small as possible”. The coefficients ui(t) are determined
such that the residual is orthogonal to a set of test functions:∫

rwidx = 0 for i = 1, . . . , N (5.22)

For the Galerkin method, the basis function themselves are chosen as test functions: ϕi = wi. For the
1d-advection case, it follows that:

N∑
j=1

duj
dt

∫
ϕiϕjdx+ uj

∫
ϕi
dϕj
dx

dx = 0 (5.23)

After evaluating the integrals, one obtains:

1

6

dui−1

dt
+

2

3

dui
dt

+
1

6

dui+1

dt
= − c

2h
(ui+1 − ui−1) (5.24)

Semi-discrete equation since the time derivative is not jet discretized. This equation is implicit. For the finite
element method in general a large but sparse system must be solved.

For the present 1d-advection case, a tri-diagonal system for which efficient solver exists such as the Thomas
algorithm.

uj = A exp(i(jkh− ωt)) (5.25)

Dispersion relation:

ω =
3

2 + cos(hk)

sin(kh)

h
(5.26)

is a approximation of the true dispersion relation to the fourth order in h.

5.4. Spectral methods

As previously, the solution is projected into a series of function.

u∗ =

N∑
j=0

uj(t)ϕj(x) (5.27)

But now, the basis function are chosen orthogonal.The choice of the orthogonal function is often determined
by the geometry of domain. For the 1d-advection problem, we choose Fourier modes:

ϕj = exp(ikjx) (5.28)

By substitution, u∗ in the 1d-advection equation, one obtains:

∂u

∂t
+ c

∂u

∂x
= (5.29)

N∑
j=0

duj
dt

ϕj + ickjujϕj = 0 (5.30)

Since the basis function ϕj are orthogonal,

duj
dt

+ ickjuj = 0 (5.31)

Spectral method has thus transformed the partial differential equations (5.1) into a set of trivial and decoupled
ordinary differential equations. The dispersion relation for the semi-discrete equation obtained by the spectral
method is thus identical to the dispersion relation of the continuous equations.

The spectral method is often used for global atmospheric circulation model where sperical harmonics are used
as basis functions. However, it is difficult to apply the spectral method to the ocean because of the complex
geometry of the domain.

Chapter 6

Sub-grid scale processes

Contents
6.1 Surface mixed layer . 96

6.2 Bottom boundary layer . 97

6.3 Horizontal sub-grid scale process . 97

6.1. Surface mixed layer

Bulk mixed layer, assumes a perfectly mixed layer. All variables are perfectly uniform over this layer. No vertical
structure is a problem where this layer extends to over hundred meters (e.g. subpolar regions).

Continuously formulated surface mixed layer:

▶ K-Profile Parameterization (KPP) (Large et al., 1994): diffusibility is based on the Richardson number,
includes non-local mixing processes

▶ Mellor-Yamada (Mellor and Yamada, 1982)

▶ k-ϵ. Additional equations for turbulent kinetic energy and turbulence dissipation or length-scale

z and s -coordinate allow a good representation of the surface mixed layer. For hystrotatic models, the
turbulence scheme must handle also if hydrostaticaly unstable, then large diffusibility to parameterize convection
(since hydrostatic approximation)

6.2. Bottom boundary layer

σ coordinate allow a good representation of the bottom boundary layer since the flow is constrained by the bottom
topography.

Width of several tens of meters depending on the roughness for the sea floor and the strength of the currents
Overflow are currents following the bottom topography. Their water is in general much denser than the

surrounding waters. Overflows are problematic in z-coordinates since topography is approximated by steps.

6.3. Horizontal sub-grid scale process

While several parametrization exists for the vertical sub-grid scale processes, only a few and simple parametrizations
are used for the horizontal sub-grid scale processes. The simplest form is the horizontal diffusion:

D(c) =
∂

∂x

(
A
∂c

∂x

)
+

∂

∂y

(
A
∂c

∂y

)
(6.1)

where A is either constant or depends on the characteristics of the flow (e.g Smagorinsky, 1963). Most
numerical ocean model require a horizontal diffusion to dissipate energy at small grid scale.

Exercise 14: Refraction of surface gravity waves

As in optics, the refraction of ocean surface gravity waves obeys the Snell-Descartes law. The phase
velocity of the surface gravity waves is a function of depth. The refraction of surface gravity waves is
applied to the propagation of a tsunami in the Pacific Ocean. The bottom topography is approximated
by a series of contours: each contours represents a discontinuity of the bottom depth and between two
successive contours, the depth is assumed constant. The starting point of the tsunami wave is 38.297°N,
142.372°E and 16 initial propagation directions (or more) spanning the full circle are used. For each initial
direction, the path and the time when the tsunami reaches the shoreline of the Pacific Ocean are modeled.
Results will be discussed and compared to the NOAA tsunami simulation.

Exercise 15: Lagrangian surface drift

A 100 surface drifters are released in the Pacific Ocean. The position of each of those drifters can be
modeled by using the surface velocity v which is a function of the position x and time t.

dx(t)

dt
= v(x, t) (6.2)

Initially the drifters are located on a regular 10 × 10 grid with a grid spacing of 1 km. The student
can choose the precise positioning of this grid and the starting time. It is advised to use the 4th order
Runge–Kutta discretization scheme. For the surface velocity fields, the student can either use the results of
the global HYCOM model (http: // hycom. org/ dataserver/ , http: // hycom. org/ dataserver/
glb-analysis/ expt-90pt9) or other model results. The simulation is stopped after 60 days. Results
will be discussed in connection with the general circulation.

http://hycom.org/dataserver/
http://hycom.org/dataserver/glb-analysis/expt-90pt9
http://hycom.org/dataserver/glb-analysis/expt-90pt9

Chapter 7

Programming aspects

Contents
7.1 Programming languages . 100

7.2 Elements of a programming language . 101

7.2.1 Elementary types . 101

7.2.2 Arrays and structures . 102

7.2.3 Statements and commands . 103

7.2.4 Subroutines and functions . 104

7.3 General structure of an ocean model . 108

7.1. Programming languages

There are two general approaches to implement programming languages:

▶ Interpretation: An interpreter takes the program in some language, and performs the actions written in that
language on some machine.

▶ Compilation: A compiler translates the a program into some other language, which is in general machine
code that a computer can execute directly.

Fortran, C and C++ are examples of languages which are compiled to machine code. Interpreted languages
are for example Octave/Matlab, Python and Shell scripts. Compiled languages require the declaration of types of
a variables. It is thus easier to develop programs written in Interpreted languages. However, programs written in
compiled languages are generally faster than programs in interpreted languages. Most ocean models are written in
Fortran. But interpreted languages are often used for preparing the models fields and post-processing the results.

7.2. Elements of a programming language

7.2.1. Elementary types

Fortran Matlab/Octave
boolean (true or false) logical logical
integer (whole number) integer(1), integer(2), integer(4),

integer(8)
int8, int16, int32, int64

unsigned integer (positive whole
number)

not available uint8, uint16, uint32, uint64

real (real number) real(4), real(8) single, double
characters and string character(length) char
variable declaration real(4) :: variable not needed

7.2.2. Arrays and structures

Fortran Matlab/Octave
arrays (collection of variables of
the same type accessed by an in-
dex)

r e a l (4) : : a r r a y (10 ,20) a r r a y = zeros (10 ,20)

structure (collection of variables of
the different type accessed by their
name)

! d e f i n i t i o n o f type
type type name
! f i e l d s , e . g . :

r e a l (4) : : f i e l d n ame
end type [type name]

! d e c l a r a t i o n o f
! v a r i a b l e
type (type name) : : s

! a c c e s s
s%f i e l d name

% d e f i n i t o n
s . f i e l d n ame = va l u e ;

% ac c e s s
s . f i e l d n ame

cell arrays (collection of variables
of the different types accessed by
an index)

not available

a r r a y {1} = va l u e1 ;
a r r a y {2} = va l u e2 ;

7.2.3. Statements and commands

Fortran Matlab/Octave
conditions

i f (c o n d i t i o n) then
! do t h i s i f c o n d i t i o n
! i s t r u e
e l s e
! o t h e rw i s e t h i s
end i f

i f c o n d i t i o n
% do t h i s i f c o n d i t i o n
% i s t r u e
e l s e
% oth e rw i s e t h i s
end

loops using an iterator

do i=imin , imax , s t e p
! do someth ing
end do

fo r i=imin : s t e p : imax
% do someth ing
end

loops with stop conditions

whi le (c o n d i t i o n) do
! do someth ing wh i l e
! c o n d i t i o n i s t r u e
end do

whi le c o n d i t i o n
% do someth ing wh i l e
% c o n d i t i o n i s t r u e
end

terminate loop prematurely

ex i t break

7.2.4. Subroutines and functions

Fortran Matlab/Octave
main program

program main
! do some th i n g
end program main

Commands can be regrouped in a
file (script). The script can be
called using the file name (with-
out the extension “.m”)

subroutine (block of code)

subrout ine sub (param1 ,
param2)

! do some th i n g
end subrout ine sub

! c a l l a s u b r o u t i n e
c a l l fun (p1 , p2)

see functions

function (block of code with re-
turn value)

A function can have only a single
return value

r e a l funct ion fun (param)
! do some th i n g

fun = . . .
end funct ion fun

! c a l l a f u n c t i o n
r = fun (p)

A function can have multiple re-
turn values and it must be saved
in a file with the same name (plus
extension “.m”)

funct ion [r] = fun (p)
% do some th i n g

r = . . .
end

% c a l l a f u n c t i o n
r = fun (p)

parameters of function and sub-
routines

Type of parameters have to be
declared after the subroutine or
function statement. Parameters
are passed by reference (i.e. mod-
ifications will also affect the corre-
sponding parameter from the call-
ing level).

r e a l funct ion fun (param)
i n teger : : param

! do some th i n g
end funct ion fun

Type of parameters are not de-
clared. Parameters are passed by
value (i.e. modifications will not
affect the corresponding parame-
ter from the calling level).

Exercise 16:

Programming exercise:

▶ 1D-diffusion equation (for i = 1, ..., N)

c
(n+1)
i = c

(n)
i +

∆t

∆x
(Fi+1 − Fi) (7.1)

Fi =
κ

∆x
(c

(n)
i − c

(n)
i−1) (7.2)

with closed and periodic boundary conditions. Initially all values of c are zero except one (at the
center or near the boundary).

▶ 2D-diffusion equation. Generalize previous equations to 2D and implement it.

7.3. General structure of an ocean model

Solve dynamical equations for next time step

Apply boundary conditions

Save the model output every n time steps

Read or compute forcing fields (surface fluxes,
open boundary conditions, ...)

Initialization of variables and grid

Figure 7.1: Different parts of a numerical ocean model

Recommendations for assignment

▶ Proposed structure:

• start with abstract and introduction

• finish with the discussion of the result and the conclusions

▶ Try to interpret the results and its overall significance in a wider context

▶ Send your work as PDF file per email and include also your source code as a separate file in the attachment.
There is no need to embed your source code in the PDF document.

▶ Avoid common issues with figures:

• all axes should have labels

• figures should have legends if multiple lines are present.

• use descriptive titles especially if a figure contains multiple sub-plots

• labels and titles should be as large as the text font-size

• do not forget the units

Appendix A

Calculus reminder

A.1. Divergence theorem

▶ Also known as Gauss’s theorem or Ostrogradsky’s theorem

▶ For any continuously differentiable vector field F defined over the volume V∫
V

(∇ · F) dV =

∫
S

(F · n) dS (A.1)

where S is the surface bounding the volume V and n a unit vector pointing outward.

A.2. Stream function

▶ Assume that the depth integrated flow, is non-divergent:

∂U

∂x
+
∂V

∂y
= 0 (A.2)

▶ One can show that a function ϕ exists which satisfies

U = −∂ϕ
∂y

(A.3)

V =
∂ϕ

∂x
(A.4)

(A.5)

▶ Note: the sign convention can be different

▶ The flow dQ trough an infinitesimal section is given by:

dQ = Udy − V dx (A.6)

= −∂ϕ
∂y
dy − ∂ϕ

∂x
dx (A.7)

= −dϕ (A.8)

-V dx

U dy

(x,y)

(x+dx,y+dy)

dQ

Figure A.1: Flow across an infinitesimal section

▶ The flow Q crossing two A and B can be computed as:∫ B

A

U · n ds =
∫ B

A

dQ = ϕ(A)− ϕ(B) (A.9)

where U = (U, V)

▶ The integrated flow does not depend on the particular path.

P1

P2

A

B

Figure A.2: Flow across two different paths

▶ Question: what would happen if the flow between the two paths P1 and P2 are not equal?

Figure A.3: Global stream function (Sv) derived from the MOM2 model (Zika et al., 2012)

Appendix B

Transformation of coordinates

In order to solve a partial differential equations analytically, we are free to chose the coordinate system which
suites best the geometry of the problem. Also for numerical problems, such transformations are interesting since
it may help the discretizations of the model domains (for example a discretization which follows the bottom
topography) or it may reduce discretization error when the coordinate system is chosen such to follow variations
of a given property (for example density in isopycnal coordinates).

Change of the coordinates (x1, x2, . . . , xn) to the new coordinate systems (x′1, x
′
2, . . . , x

′
n)

x1 = x1(x
′
1, x

′
2, . . . , x

′
n) (B.1)

x2 = x2(x
′
1, x

′
2, . . . , x

′
n) (B.2)

...

xn = xn(x
′
1, x

′
2, . . . , x

′
n) (B.3)

This transformations is assumed to be invertible. The coordinates (x′1, x
′
2, . . . , x

′
n) can also be expressed in

terms of (x1, x2, . . . , xn):

x′1 = x′1(x1, x2, . . . , xn) (B.4)

x′2 = x′2(x1, x2, . . . , xn) (B.5)

...

x′n = x′n(x1, x2, . . . , xn) (B.6)

Any function f of the old coordinate (x1, x2, . . . , xn) can be transformed into the new coordinate systems by
substituting (x1, x2, . . . , xn):

f(x1, x2, . . . , xn) = f(x1(x
′
1, x

′
2, . . . , x

′
n), . . . , xn(x

′
1, x

′
2, . . . , x

′
n)) (B.7)

∂

∂x′i
f(x1(x

′
1, x

′
2, . . . , x

′
n), . . . , xn(x

′
1, x

′
2, . . . , x

′
n)) =

∂xj
∂x′i

∂

∂xj
f(x1, x2, . . . , xn) (B.8)

or in matrix form
∂

∂x′
1

∂
∂x′

2

...
∂

∂x′
n

 =

∂x1

∂x′
1

∂x2

∂x′
1

. . . ∂xn

∂x′
1

∂x1

∂x′
2

∂x2

∂x′
2

. . . ∂xn

∂x′
2

...
...

. . .
...

∂x1

∂x′
n

∂x2

∂x′
n

. . . ∂xn

∂x′
n

∂
∂x1
∂

∂x2

...
∂

∂xn

 (B.9)

The matrix in the previous equations is also written as:

M =

∂x1

∂x′
1

∂x2

∂x′
1

. . . ∂xn

∂x′
1

∂x1

∂x′
2

∂x2

∂x′
2

. . . ∂xn

∂x′
2

...
...

. . .
...

∂x1

∂x′
n

∂x2

∂x′
n

. . . ∂xn

∂x′
n

 (B.10)

To transform a partial differential equations, we need to expressed derivatives in (x1, x2, . . . , xn) in derivatives
in (x′1, x

′
2, . . . , x

′
n):

∂
∂x1
∂

∂x2

...
∂

∂xn

 = M−1

∂

∂x′
1

∂
∂x′

2

...
∂

∂x′
n

 (B.11)

The determinant of the matrix M is called the Jacobian J . At some locations, the Jacobian may be zero and
the inverse does not exists. For example, the Jacobian is zero at the origin of polar coordinate system.

If the transformations is given in the form of equations (B.4) - (B.6), the derivative in the new coordinate
system can be obtained directly by:

∂
∂x1
∂

∂x2

...
∂

∂xn

 =

∂x′

1

∂x1

∂x′
2

∂x1
. . .

∂x′
n

∂x1
∂x′

1

∂x2

∂x′
2

∂x2
. . .

∂x′
n

∂x2

...
...

. . .
...

∂x′
1

∂xn

∂x′
2

∂xn
. . .

∂x′
n

∂xn

∂
∂x′

1
∂

∂x′
2

...
∂

∂x′
n

 (B.12)

An infinitesimal increment dxj is transformed according to the following rule:

dxj =
∂xj
∂x′i

dx′i (B.13)

This can be expressed in matrix form as:
dx1
dx2
...

dxn

 = MT

dx′1
dx′2
...

dx′n

 (B.14)

Note that here the infinitesimal increments are transformed by the multiplication of the matrix MT whereas
the derivative are transformed by M−1.

For vector fields, a new set of basis vector (e′1, . . . , e
′
n) need to be introduced. The vector e′i is proportional

to the direction the variable x′i and all other variables are constant.

hie
′
i =

∂

∂x′i
(xjej) (B.15)

=
∂xj
∂x′i

ej (B.16)

The proportionality constant hi is determined by requiring that the norm of e′i is 1.

hi =

√√√√ n∑
j=1

(
∂xj
∂x′i

)2

(B.17)

The components of a vector field v are obtained by projecting this vector on the basis vectors:

vjej = v′ie
′
i (B.18)

vj = e′i · ejv′i (B.19)

=
∂xj
∂x′i

v′i
hi

(B.20)

v1
v2
...
vn

 = MT

v′1/h1
v′2/h2

...
v′n/hn

 (B.21)

B.1. Example

Polar coordinates:

x = r cos(θ) (B.22)

y = r sin(θ) (B.23)

M =

(
∂x
∂r

∂y
∂r

∂x
∂θ

∂y
∂θ

)
=

(
cos(θ) sin(θ)

−r sin(θ) r cos(θ)

)
(B.24)

Jacobian

J = r cos2(θ) + r sin2(θ) = r (B.25)

The inverse matrix

M−1 =

(
cos(θ) − 1

r sin(θ)
sin(θ) 1

r cos(θ)

)
(B.26)

∂

∂x
= cos(θ)

∂

∂r
− 1

r
sin(θ)

∂

∂θ
(B.27)

∂

∂y
= sin(θ)

∂

∂r
+

1

r
cos(θ)

∂

∂θ
(B.28)

Appendix C

Volume conservation in transformed
coordinates

The derivatives in original coordinates (x, y, z, t) and transformed coordinates (x′, y′, z′, t′) of a given function f
are related by:

∂f

∂x
=

∂f

∂x′
+
∂f

∂z′
∂z′

∂x
(C.1)

∂f

∂y
=

∂f

∂y′
+
∂f

∂z′
∂z′

∂y
(C.2)

∂f

∂z
=

∂f

∂z′
∂z′

∂z
(C.3)

∂f

∂t
=

∂f

∂t′
+
∂f

∂z′
∂z′

∂t
(C.4)

In particular for f = z, one obtains:

∂z

∂x′
= −J ∂z

′

∂x
(C.5)

∂z

∂y′
= −J ∂z

′

∂y
(C.6)

1 = J
∂z′

∂z
(C.7)

∂z

∂t′
= −J ∂z

′

∂t
(C.8)

where J is the Jacobian of this transformation defined by

J =
∂z

∂z′
. (C.9)

The volume conservations is given by:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (C.10)

In equation (C.10), we use the transformations (C.1) - (C.3):

∂u

∂x′
+
∂u

∂z′
∂z′

∂x
+
∂v

∂y′
+
∂v

∂z′
∂z′

∂y
+
∂w

∂z′
∂z′

∂z
= 0 (C.11)

Every term is multiplied by J and using equation (C.7):

J
∂u

∂x′
+ J

∂z′

∂x

∂u

∂z′
+ J

∂v

∂y′
+ J

∂z′

∂y

∂v

∂z′
+
∂w

∂z′
= 0 (C.12)

Equations (C.5) and (C.6) allow to rewrite the 2nd and 4th terms as

J
∂u

∂x′
− ∂z

∂x′
∂u

∂z′
+ J

∂v

∂y′
− ∂z

∂y′
∂v

∂z′
+
∂w

∂z′
= 0. (C.13)

The terms in blue can also be written as:

∂z

∂x′
∂u

∂z′
=

∂

∂z′

(
∂z

∂x′
u

)
− ∂J

∂x′
u (C.14)

∂z

∂y′
∂v

∂z′
=

∂

∂z′

(
∂z

∂y′
v

)
− ∂J

∂y′
v (C.15)

Expressions (C.14) and (C.15) are substituted in equation (C.13):

J
∂u

∂x′
+
∂J

∂x′
u+ J

∂v

∂y′
+
∂J

∂y′
v +

∂w

∂z′
− ∂

∂z′

(
u
∂z

∂x′

)
− ∂

∂z′

(
v
∂z

∂y′

)
= 0 (C.16)

We isolate the derivatives relatives to z′:

∂Ju

∂x′
+
∂Jv

∂y′
+

∂

∂z′

(
w − u

∂z

∂x′
− v

∂z

∂y′

)
= 0 (C.17)

This is already quite nice and compact, but we can do better using again equations (C.5) - (C.8):

∂Ju

∂x′
+
∂Jv

∂y′
+

∂

∂z′

(
w + Ju

∂z′

∂x
+ Jv

∂z′

∂y
+ J

∂z′

∂t
+
∂z

∂t′

)
= 0 (C.18)

∂Ju

∂x′
+
∂Jv

∂y′
+

∂

∂z′

(
J

(
1

J
w + u

∂z′

∂x
+ v

∂z′

∂y
+
∂z′

∂t

))
+

∂

∂t′
∂z

∂z′
= 0 (C.19)

The expression inside the innermost brackets leads to the definition of ω (also using equation (C.7)):

ω =
∂z′

∂t
+ u

∂z′

∂x
+ v

∂z′

∂y
+ w

∂z′

∂z
(C.20)

ω corresponds to the vertical velocity relative to the transformed coordinate system.
Finally, the volume conservation expressed in the transformed coordinate system is given by:

∂J

∂t′
+
∂Ju

∂x′
+
∂Jv

∂y′
+
∂Jω

∂z′
= 0 (C.21)

Appendix D

Measures of humidity

The water vapor content of the air is important to compute the latent heat flux between the air and the ocean. It
also intervenes in the long-wave radiation due to the greenhouse effect. Unfortunately, several ways exist to express
the humidity (absolute humidity, relative humidity, specific humidity, partial pressure of water vapor, mixing ratio,
dew point temperature, ...). Due to this proliferation of humidity measures, it might be necessary to convert the
humidity measure provided by the atmospheric model to the humidity measure need by the ocean model.

D.1. Definitions

Absolute humidity : The absolute humidity ρv is the mass of water vapour per volume of wet air.

Density of dry air : The density of dry air ρd is mass of air per volume of wet air.

Density of wet air : The density of wet air ρ is mass of air and water per volume of wet air.

All are related by:

ρ = ρv + ρd (D.1)

Specific humidity : qs

qs =
ρv
ρ

=
ρv

ρv + ρd
(D.2)

Mixing ratio qv: the mass of water vapor divided by the mass of dry air

qv =
ρv
ρd

=
ρv

ρ− ρv
(D.3)

Dew point temperature Td: The dew point is the temperature at which a given parcel of humid air must be
cooled, at constant barometric pressure, for water vapor to condense into water.

D.2. Mixing ratio and specific humidity

Mixing ratio and specific humidity are directly related by:

qs =
ρv

ρv + ρd
=

qv
1 + qv

(D.4)

and

qv =
ρv

ρ− ρv
=

qs
1− qs

(D.5)

D.3. The ideal gas law

For a mixture of ideal gases, the partial pressure of any component can be found from the ideal gas law applied
to that component only. The ideal gas law is applied to water vapor and dry air”

e = ρvRvT (D.6)

pd = ρdRdT (D.7)

where T is temperature, e is water vapour pressure and pd is pressure of dry air. Rv and Rd are the specific
gas constant for water vapor (462 J/(kg K)) and dry air respectively (287 J/(kg K)).

The total air pressure p is the sum of these partial pressures:

p = e+ pd (D.8)

For most application, only the ratio of these constants are important:

ϵ =
Rd

Rv
= 0.62198 (D.9)

D.4. Water vapour saturation pressure

Water vapour saturation pressure es is the maximum partial pressure that water vapor molecules would exert if
the air were saturated with vapor at a given temperature and pressure.

Several empirical formulas exists for the water vapor saturation pressure. Over liquid water, the Teten formula
approximates es(T, p):

es(T, p) = 611.21 (1.0007 + 3.46 10−8P) exp

(
17.502T

240.97 + T

)
(D.10)

where P and es are Pascal and T in degree Celsius.

D.5. Relative humidity

The relative humidity is defined by:

rh =
e

es
(D.11)

It is often expressed in %. From the ideal gas law, it follows that:

rh =
ρv
ρs

(D.12)

where ρs is the density of water vapour in saturated air.

ρs =
es
RvT

(D.13)

D.6. From water vapour pressure to specific humidity

To convert the from one humidity measure to another, it is convenient to use the water vapor pressure. As an
example, we derive the equation liking specific humidity and vapour pressure.

qs =
ρv

ρv + ρd
(D.14)

=
e

RvT
e

RvT
+ pd

RdT

(D.15)

=
ϵe

ϵe+ pd
(D.16)

=
ϵe

ϵe+ p− e
(D.17)

=
ϵe

p+ (ϵ− 1)e
(D.18)

Since in general p >> e, the following approximation is often used:

qs ∼ ϵe

p
(D.19)

Appendix E

Example of a stability analysis

Stability analysis of the linear shallow water equation in a 1d-domain:

∂η

∂t
= −∂U

∂x
(E.1)

∂U

∂t
= −gh∂η

∂x
(E.2)

A simple foreward Euler scheme on a staggered grid yields:

η
(n+1)
i = η

(n)
i − ∆t

∆x

(
U

(n)
i+1/2 − U

(n)
i−1/2

)
(E.3)

U
(n+1)
i+1/2 = U

(n)
i+1/2 − gh

∆t

∆x

(
η
(n)
i+1 − η

(n)
i

)
(E.4)

We look for a solution of the following structure (why this is not a loss of generality?):

η
(n)
i = Anej ik∆x (E.5)

U
(n)
i = Bnej ik∆x (E.6)

where j2 = 1

An+1 = An − ∆t

∆x

(
Bnej k∆x/2 −Bne−j k∆x/2

)
(E.7)

Bn+1 = Bn − gh∆t

∆x

(
Anej k∆x/2 −Ane−j k∆x/2

)
(E.8)

Remeber the definition of the sinus function:

sin(x) =
ejx − e−jx

2j

An+1 = An − 2j sin

(
k∆x

2

)
∆t

∆x
Bn (E.9)

Bn+1 = Bn − 2j sin

(
k∆x

2

)
gh∆t

∆x
An (E.10)

α = sin
(
k∆x
2

)
∆t
∆x and c =

√
gh

An+1 = An − 2jαBn (E.11)

Bn+1 = Bn − 2jc2αAn (E.12)

(
An+1

Bn+1

)
=

(
1 −2jα

−2jαc2 1

)(
An

Bn

)
Eigenvalues ∣∣∣∣ 1− λ −2jα

−2jαc2 1− λ

∣∣∣∣ = 0

(1− λ)2 = −4αc2

λ1,2 = 1± 2j
√
αc2 → |λ1,2| > 1

always unstable
There is a better way:

An+1 = An − 2jαBn (E.13)

Bn+1 = Bn − 2jc2αAn+1 = (1− 4c2α2)Bn − 2jc2αAn (E.14)

(
An+1

Bn+1

)
=

(
1 −2jα

−2jαc2 1− 4c2α2

)(
An

Bn

)
Eigenvalues ∣∣∣∣ 1− λ −2jα

−2jαc2 1− 4c2α2 − λ

∣∣∣∣ = 0

(1− λ)(1− 4c2α2 − λ)2 = −4αc2 (E.15)

λ2 − (2− 4c2α2)λ+ 1− 4c2α2 = −4αc2 (E.16)

λ2 − (2− 4c2α2)λ+ 1 = 0 (E.17)

λ1,2 = 1− 2c2α2 ±
√

(1− 2c2α2)2 − 1 (E.18)

= 1− 2c2α2 ±
√
4c4α4 − 4c2α2 (E.19)

= 1− 2c2α2 ± 2cα
√
c2α2 − 1 (E.20)

if α < 1/c

|λ1,2|2 = (1− 2c2α2)2 + 4c2α2(1− c2α2) (E.21)

= 1−4c2α2 + 4c4α4 + 4c2α2 − 4c4α4 (E.22)

= 1 (E.23)

stable
if α > 1/c (αc > 1)

λ2 = 1− 2c2α2 − 2cα
√
c2α2 − 1 < 1− 2c2α2 < −1 (E.24)

unstable
Follow-up: verify results numerically

Appendix F

NetCDF

NetCDF is a machine-independent file format for scientific data sets. Most numerical models save their output
as NetCDF files either directly or as a post-processing step. The file format allows to describe the saved data,
for example it allows to specify units and the meaning of the dimensions of the variables. The NetCDF library is
available at www.unidata.ucar.edu/software/netcdf/.

F.1. Fortran 90

F.1.1. Reading NetCDF files

!

! Read data to a netcdf file

!

!

www.unidata.ucar.edu/software/netcdf/

! Compile with something like:

!

! gfortran -o read_netcdf read_netcdf.f90 -I.../netcdf/include -L.../netcdf/lib -lnetcdff -lnetcdf

!

! or

! gfortran -o read_netcdf read_netcdf.f90 $(nc-config --fflags --flibs)

!

! Execute:

!

! ./read_netcdf

!

program read_netcdf

use netcdf

implicit none

integer :: ncid, status, dimids(2), varid

integer :: i,j

real :: temp(6,4), valid_range(2)

character(64) :: units

! open netcdf file example.nc in read-only

status = nf90_open(’example.nc’,nf90_nowrite,ncid)

call check_error(status)

! find the identifier for the variable ’temp’

status = nf90_inq_varid(ncid, ’temp’, varid)

call check_error(status)

! retrieve the netcdf variable temp

! the variable temp must have the same size than in the NetCDF file

status = nf90_get_var(ncid, varid, temp)

call check_error(status)

! retrieve the attribute units of variable temp

status = nf90_get_att(ncid, varid, ’units’, units)

call check_error(status)

! retrieve the attribute valid_range of variable temp

status = nf90_get_att(ncid, varid, ’valid_range’, valid_range)

call check_error(status)

! close file

status = nf90_close(ncid)

call check_error(status)

write(6,*) ’Units: ’,units

write(6,*) ’Valid_range: ’,valid_range

write(6,*) ’Temp: ’

do j=1,4

write(6,*) (temp(i,j),i=1,6)

end do

contains

subroutine check_error(status)

integer, intent (in) :: status

if(status /= nf90_noerr) then

write(6,*) ’NetCDF error: ’,trim(nf90_strerror(status))

stop "Stopped"

end if

end subroutine check_error

end program read_netcdf

F.1.2. Writing NetCDF files

!

! Write data to a netcdf file

!

!

! Compile with something like:

!

! gfortran -o write_netcdf write_netcdf.f90 -I.../netcdf/include -L.../netcdf/lib -lnetcdff -lnetcdf

!

! or

!

! gfortran -o write_netcdf write_netcdf.f90 $(nc-config --fflags --flibs)

!

! Execute:

!

! ./write_netcdf

!

program write_netcdf

use netcdf

implicit none

integer :: ncid, status, dimids(2), varid

integer :: i,j

real :: temp(6,4)

! create some data

do j=1,4

do i=1,6

temp(i,j) = i+j

end do

end do

! create netcdf file called example.nc

! nf90_clobber: overwrite if exists

status = nf90_create(’example.nc’,nf90_clobber,ncid)

call check_error(status)

! define the dimension longitude and latitude of

! appropriate size

status = nf90_def_dim(ncid, ’longitude’, 6, dimids(1))

call check_error(status)

status = nf90_def_dim(ncid, ’latitude’, 4, dimids(2))

call check_error(status)

! create a variable temp of type float of the size 6x4

! (dimension longitude and latitude).

status = nf90_def_var(ncid, ’temp’, nf90_float, dimids, varid)

call check_error(status)

! define a string as attribute of the variable

status = nf90_put_att(ncid, varid, ’units’, ’degree Celsius’)

call check_error(status)

! define a vector of floats as attribute of the variable

status = nf90_put_att(ncid, varid, ’valid_range’, (/-10.,40./))

call check_error(status)

! end definitions: leave define mode

status = nf90_enddef(ncid)

call check_error(status)

! store the variable temp in the netcdf file

status = nf90_put_var(ncid,varid,temp)

call check_error(status)

! close netcdf file and all changes are written to disk

status = nf90_close(ncid)

call check_error(status)

write(6,*) ’example.nc file created. You might now inspect this file’

write(6,*) ’with the shell command "ncdump example.nc"’

contains

subroutine check_error(status)

implicit none

integer, intent (in) :: status

if(status /= nf90_noerr) then

write(6,*) ’NetCDF error: ’,trim(nf90_strerror(status))

stop "Stopped"

end if

end subroutine check_error

end program write_netcdf

F.2. Matlab and Octave

Matlab R2012 or newer has support for NetCDF. For Octave you need to install the package “netcdf” from
http://octave.sourceforge.net/netcdf/.

F.2.1. Reading NetCDF files

% Example for reading a netcdf file

% in Matlab and Octave

% the name of the netcdf file

filename = ’example.nc’;

% retrieve the netcdf variable temp

temp = ncread(filename,’temp’);

% retrieve the attribute units of variable temp

temp_units = ncreadatt(filename,’temp’,’units’);

% retrieve the attribute valid_range of variable temp

temp_valid_range = ncreadatt(filename,’temp’,’valid_range’);

% retrieve the global attribute history

http://octave.sourceforge.net/netcdf/

global_history = ncreadatt(filename,’/’,’history’);

F.2.2. Writing NetCDF files

% Example for creating a netcdf file

% in Matlab and Octave

% create some variables to store them in a netcdf file

latitude = -90:1:90;

longitude = -179:1:180;

[y,x] = meshgrid(pi/180 * latitude,pi/180 * longitude);

temp = cos(2*x) .* cos(y);

%---------------------------------------%

% %

% write data to a netcdf file %

% %

%---------------------------------------%

filename = ’example.nc’;

delete(filename);

% coordinate variable longitude

% create a variable longitude of type double with

% 360 elements (dimension longitude).

nccreate(filename,’longitude’,’Dimensions’,{’longitude’,size(temp,1)},’Format’,’classic’);

ncwriteatt(filename,’longitude’,’standard_name’,’longitude’);

% define a string attribute of the variable longitude

ncwriteatt(filename,’longitude’,’units’,’degree_east’);

% coordinate variable latitude

nccreate(filename,’latitude’,’Dimensions’,{’latitude’,size(temp,2)});

ncwriteatt(filename,’latitude’,’standard_name’,’latitude’);

ncwriteatt(filename,’latitude’,’units’,’degree_north’);

% define variable temp

% create a variable temp of type double of the size 360x181

% (dimension longitude and latitude).

nccreate(filename,’temp’,’Dimensions’,{’longitude’,’latitude’});

ncwriteatt(filename,’temp’,’standard_name’,’northward_sea_water_velocity’);

ncwriteatt(filename,’temp’,’units’,’m s-1’);

ncwriteatt(filename,’temp’,’valid_range’,[-10 40]);

ncwriteatt(filename,’/’,’history’,’netcdf file created by write_netcdf.m’);

% store the octave variables longitude, latitude

% and temp in the netcdf file

ncwrite(filename,’longitude’,longitude);

ncwrite(filename,’latitude’,latitude);

ncwrite(filename,’temp’,temp);

disp([’example.nc file created. You might now inspect this file"’]);

disp([’with the shell command "ncdump -h example.nc"’]);

Bibliography

Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate
ocean model. Monthly Weather Review , 125, 2293–2315.

Arakawa, A., 1966: Computational design for long-term numerical integration of the equation of fluid motion:
two-dimensional incompressible flow. Part I. Journal of Computational Physics, 1, 119–143.

Arakawa, A. and V. Lamb, 1977: Computational design of the basic dynamical process of the UCLA general
circulation model . Methods in Computational Physics, Academic Press, New York, 173–265.

— 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Monthly Weather
Review , 109, 18–36.

Barth, A., A. Alvera-Azcárate, M. Rixen, and J.-M. Beckers, 2005: Two-way nested model of mesoscale circulation
features in the Ligurian Sea. Progress In Oceanography , 66, 171–189, doi:10.1016/j.pocean.2004.07.017.
URL http://hdl.handle.net/2268/4301

Barth, A., A. Alvera-Azcárate, and R. H. Weisberg, 2008: A nested model study of the Loop Current gen-
erated variability and its impact on the West Florida Shelf. Journal of Geophysical Research, 113, C05009,
doi:10.1029/2007JC004492.
URL http://hdl.handle.net/2268/26199

http://hdl.handle.net/2268/4301
http://hdl.handle.net/2268/26199

Beckers, J.-M., 1991: Application of a 3D model to the Western Mediterranean. Journal of Marine Systems, 1,
315–332.

Beckers, J.-M. and E. Deleersnijder, 1993: Stability of a FBTCS scheme applied to the propagation of shallow-
water inertia-gravity waves on various space grids. Journal of Computational Physics, 108, 95–104.

Blayo, E. and L. Debreu, 2005: Revisiting open boundary conditions from the point of view of characteristic
variables. Ocean Modelling , 9, 231–252.

Bryan, K., 1969a: Climate and the ocean circulation. III. The ocean model. Monthly Weather Review , 97,
806–827.

— 1969b: A numerical model for the study of the circulation of the world oceans. Journal of Computational
Physics, 4, 347–376.

Castellari, S., N. Pinardi, and K. Leaman, 1998: A model study of air-sea interactions in the Mediterranean Sea.
Journal of Marine Systems, 18, 89–114.

Chapman, D., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model.
Journal of Physical Oceanography , 15, 1060–1075.

Chassignet, E., H. Arango, D. Dietrich, T. Ezer, M. Ghil, D. Haidvogel, C.-C. Ma, A. Mehra, A. Paiva, and
Z. Sirkes, 2000: DAMEE-NAB: The base experiments. Dynamics of Atmospheres and Oceans, 32, 155–184.

Chassignet, E. and P. Malanotte-Rizzoli, eds., 2000: Dynamics of Atmospheres and Oceans (special issue),
Elsevier Science, Amsterdam, volume 32, chapter Ocean Circulation Model Evaluation Experiments for the
North Atlantic Basin. 155–432.

Daniel, P., 2004: Oil slick drift prediction and operational oceanography systems. OCEAN OPS 04 workshop,
Toulouse, France.

Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North
Pacific Ocean. Journal of Physical Oceanography , 6, 249–266.

Deleersnijder, E. and J.-M. Beckers, 1992: On the use of the σ-coordinate system in regions of large bathymetric
variations. Journal of Marine Systems, 3, 381–390.

Dukowicz, J., 1995: Mesh effects for Rossby waves. Journal of Computational Physics, 119, 188–194.

Flather, R., 1976: A tidal model of the northwest European continental shelf. Mémoires de la Societe Royale des
Sciences de Liège, 6, 141–164.

Gill, A. E., 1982: Atmosphere-Ocean Dynamics, volume 30 of International Geophysics Series. Academic Press.

Griffies, S., C. Boning, F. Bryan, E. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A.-M. Treguier, and D. Webb,
2000: Developments in ocean climate modelling. Ocean Modelling , 2, 123–192.

Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordiante ocean models.
Journal of Physical Oceanography , 21, 610–619.

Hsieh, W. W., M. Davey, and R. Wajsowicz, 1983: The free Kelvin wave in Finite-difference numerical models.
Journal of Physical Oceanography , 13, 1383–1397.

Janjić, Z., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Monthly Weather
Review , 112, 1234–1245.

Jerlov, N. G., 1968: Optical oceanography . Elsevier Publishing Co., New York, 194 pp.

Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Boundary–Layer Meteoroplogy , 91–112.

Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: a review and a model with a nonlocal
boundary layer parameterization. Reviews of Geophysics, 32, 363–403.

McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO and an integrating concept in Earth Science.
Science, 314, 1710–1715.

Mellor, G. and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems.
Reviews of Geophysics and Space Physics, 20, 851–875.

Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251–269.

Robert, C. M., 2008: Chapter two generalities: Geodynamics of the ocean. Global Sedimentology of the Ocean: An
Interplay between Geodynamics and Paleoenvironment, C. M. Robert, ed., Elsevier, volume 3 of Developments
in Marine Geology , 23 – 87.

Rosati, A. and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. Journal of Physical
Oceanography , 18, 1601–1626.

Shchepetkin, A. and J. McWilliams, 2003: A Method for Computing Horizontal Pressure-Gradient Force in
an Oceanic Model with a Non-Aligned Vertical Coordinate. Journal of Geophysical Research, 108, 1–34,
doi:10.1029/2001JC001047.

— 2005: The Regional Oceanic Modeling System: A split-explicit, free-surface, topography-following-coordinate
ocean model. Ocean Modelling , 9, 347–404, doi:10.1016/j.ocemod.2004.08.002.

Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment.
Mon. Wea. Rev., 91, 99–164.

Song, Y. T. and D. Haidvogel, 1994: A Semi-implicit ocean circullation model using a generalized topography
following coordinate system. Journal of Computational Physics, 115, 228–244.

Zika, J. D., M. H. England, and W. P. Sijp, 2012: The Ocean Circulation in Thermohaline Coordinates. Journal
of Physical Oceanography , 42, 708–724, doi:10.1175/JPO-D-11-0139.1.

	Introduction
	Equations for hydrodynamic flow
	Navier-Stokes equations
	Non-hydrostatic primitive equations
	Primitive equations
	Shallow water equations
	Quasi-Geostrophic dynamics

	Boundary conditions
	Surface boundary conditions
	The momentum flux
	Heat flux
	Net long-wave radiation
	Latent heat flux
	Sensible heat flux
	The solar heat flux

	Bottom boundary conditions
	Lateral boundary condition
	Coast line
	Open-ocean boundary conditions
	Dirichlet boundary conditions
	Radiation boundary conditions
	Flow relaxation
	Flather boundary condition
	Model nesting

	Model grids
	Vertical coordinate
	General coordinate transformation
	z-coordinate
	-coordinate
	Isopycnals

	Horizontal grid
	Structured mesh
	Cartesian mesh
	Spherical mesh
	Generalized orthogonal mesh

	Grid staggering
	Unstructured mesh

	Time stepping

	Solving model equations on a grid
	Finite difference
	Finite volume
	Finite elements
	Spectral methods

	Sub-grid scale processes
	Surface mixed layer
	Bottom boundary layer
	Horizontal sub-grid scale process

	Programming aspects
	Programming languages
	Elements of a programming language
	Elementary types
	Arrays and structures
	Statements and commands
	Subroutines and functions

	General structure of an ocean model

	Calculus reminder
	Divergence theorem
	Stream function

	Transformation of coordinates
	Example

	Volume conservation in transformed coordinates
	Measures of humidity
	Definitions
	Mixing ratio and specific humidity
	The ideal gas law
	Water vapour saturation pressure
	Relative humidity
	From water vapour pressure to specific humidity

	Example of a stability analysis
	NetCDF
	Fortran 90
	Reading NetCDF files
	Writing NetCDF files

	Matlab and Octave
	Reading NetCDF files
	Writing NetCDF files

	References

