
OCEA0036-1

Structure and application of numerical
ocean models

Alexander Barth

a.barth@ulg.ac.be

Revision 1.6

September 22, 2022

Contents

1 Introduction 3

2 Equations for hydrodynamic flow 6
2.1 Navier-Stokes equations . 6
2.2 Non-hydrostatic primitive equations . 7
2.3 Primitive equations . 8
2.4 Shallow water equations . 9
2.5 Quasi-Geostrophic dynamics . 12

3 Boundary conditions 14
3.1 Surface boundary conditions . 14

3.1.1 The momentum flux . 14
3.1.2 Heat flux . 15

3.2 Bottom boundary conditions . 17
3.3 Lateral boundary condition . 17

3.3.1 Coast line . 17
3.3.2 Open-ocean boundary conditions . 18

4 Model grids 23
4.1 Vertical coordinate . 23

4.1.1 General coordinate transformation . 24
4.1.2 z-coordinate . 28
4.1.3 σ-coordinate . 29
4.1.4 Isopycnals . 33

4.2 Horizontal grid . 33
4.2.1 Structured mesh . 33
4.2.2 Grid staggering . 38
4.2.3 Unstructured mesh . 39

4.3 Time stepping . 41

5 Solving model equations on a grid 44
5.1 Finite difference . 44
5.2 Finite volume . 45
5.3 Finite elements . 46
5.4 Spectral methods . 48

6 Sub-grid scale processes 49
6.1 Surface mixed layer . 49
6.2 Bottom boundary layer . 49
6.3 Horizontal sub-grid scale process . 49

1

7 Programming aspects 51
7.1 Programming languages . 51
7.2 Elements of a programming language . 51

7.2.1 Elementary types . 51
7.2.2 Arrays and structures . 52
7.2.3 Statements and commands . 52
7.2.4 Subroutines and functions . 53

7.3 General structure of an ocean model . 54

A Calculus reminder 56
A.1 Divergence theorem . 56
A.2 Stream function . 56

B Transformation of coordinates 59
B.1 Example . 61

C Volume conservation in transformed coordinates 62

D Measures of humidity 64
D.1 Definitions . 64
D.2 Mixing ratio and specific humidity . 64
D.3 The ideal gas law . 65
D.4 Water vapour saturation pressure . 65
D.5 Relative humidity . 65
D.6 From water vapour pressure to specific humidity . 65

E Example of a stability analysis 67

F NetCDF 69
F.1 Fortran 90 . 69

F.1.1 Reading NetCDF files . 69
F.1.2 Writing NetCDF files . 70

F.2 Matlab and Octave . 72
F.2.1 Reading NetCDF files . 72
F.2.2 Writing NetCDF files . 73

References 77

2

Chapter 1

Introduction

Purpose of ocean models

• developed to understand and to predict the 3-D ocean circulation, as well as the distribution of
temperature, salinity and biogeochemical variables.

• Knowing the ocean circulation allows to compute transports, which are important for e.g. assess-
ing/predicting biological activity, climate interactions and transport of pollutants.

Transport of pollutants

Figure 1.1: Oil spill forecast by METEO-FRANCE using currents from Mercator (adapted from Daniel,
2004)

Drift forecast

• Search and rescue

• Locating drifting objects

3

Iroise Sea Trail by C. Maisondieu (Ifremer) and M. Pavec (Actimar)

The journey of 29000 rubber ducks

Climate interactions

Figure 1.2: Left: SST (sea surface temperature) anomaly during El Niño (McPhaden et al., 2006). Right:
SST prediction in the Niño 3.4 region (http://iri.columbia.edu/climate/ENSO/currentinfo/SST_
table.html)

Storm surges

• Modeling of storm surges generated by a Hurricane

• Storm surge generated by a hypothetical Hurricane making landfall near St. Petersburg, Florida.

4

http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.html
http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.html

R.H. Weisberg and L. Zheng, USF, FL

Tsunami modeling

• Modeling of the Tsunami followed by the 2011
Tohoku earthquake

• Tsunamis are surface gravity waves that can
be modeled with the barotropic shallow water
equations

• Difficulty to get accurate initial conditions

M. Canter, GHER, ULg

Biological activity

Phytoplankton bloom near Kamchatka on June 2, 2010 (R. Simmon and J. Allen, based on MODIS
data).

5

Chapter 2

Equations for hydrodynamic flow

Contents
2.1 Navier-Stokes equations . 6

2.2 Non-hydrostatic primitive equations . 7

2.3 Primitive equations . 8

2.4 Shallow water equations . 9

2.5 Quasi-Geostrophic dynamics . 12

2.1 Navier-Stokes equations

The Navier-Stokes equations provide the basis for the simplified and approximated set of equations used
in numerical ocean model. The terms in the Navier-Stokes equations can be interpreted as different
processes. The approximations are justified by introducing scales of variations which allow to estimate
the magnitude of these processes and neglect some terms under the given conditions.

dρ

dt
+ ρ (∇ · v) = 0 (2.1)

ρ
dv

dt
+ 2ρΩ ∧ v = −∇p+ ρgez +∇ · Fv (2.2)

where Ω is the angular velocity vector of the Earth, ∧ is the vector cross-product, g is the acceleration
due to gravity and Fv viscosity tensor of the flow. The operator ∇ and the material derivative are defined
as:

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
(2.3)

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(2.4)

The density ρ is computed using the state equations and the internal energy, salinity and pressure.
Instead using internal energy, potential temperature is used which is related directly to internal energy.

ρ = ρ(T, S, p) (2.5)

Temperature and salinity are governed by advection-diffusion equations:

ρ
dT

dt
= ∇ · FT (2.6)

ρ
dS

dt
= ∇ · FS (2.7)

6

FT and FS are the diffusive fluxes for temperature and salinity respectively.

Exercise 1:

Give an interpretation of each term in the Navier-Stokes equations for a rotating fluid

Navier Stokes equation

Primitive equation

Boussineq approximation

Shallow water equations Quasi­geostrophic equations

Non­Hydrostatic Primitive equation

Hydrostatic approximation

Small Rossby numberSmall density effects

Small aspect ratio

Figure 2.1: Different level of approximation of geophysical fluids

2.2 Non-hydrostatic primitive equations

The non-hydrostatic primitive equations are obtained by applying the Boussinesq approximation to the
Navier-Stokes equations. In the Boussinesq approximation, density variations are neglected except for
gravity. Boussinesq approximation removes sound waves in the ocean which would otherwise
require a very small time step. Under the Boussinesq approximation, the total mass of the fluid is no
longer conserved but the total volume is. This can introduces some difficulties in modeling effects such
as sea level rise due to thermal expansion.

∇ · v = 0 (2.8)

dv

dt
+ 2Ω ∧ v = − 1

ρ0
∇p+ ρg

ρ0
ez +

1

ρ0
∇ · Fv (2.9)

where ρ0 the reference density.

Exercise 2:

How are the maximum allowable time step and wave speed linked?

7

2.3 Primitive equations

In most circumstances, the vertical momentum equation is dominated by the pressure gradient and
gravity. In the hydrostatic approximation, the pressure gradient is assumed to balance perfectly gravity
and all other terms are neglected. The vertical velocity is no longer computer prognostically, but it is
diagnosed based on the continuity equation.

∇ · v = 0 (2.10)

du

dt
+ 2Ω ∧ u = − 1

ρ0
∇hp+

1

ρ0
∇ · Fu (2.11)

∂p

∂z
= −ρg (2.12)

The differential operator ∇h is defined as:

∇h = ex
∂

∂x
+ ey

∂

∂y
(2.13)

The velocity v is decomposed into its horizontal u and vertical w component:

v = u+ wez (2.14)

Note:

• The ocean density is of the order of 1027 kg/m3 and variations of the order of 1 to 10 kg/m3

• Only the variation of the density around a reference density ρ0 are important for the hydrodynamics

• Let’s isolate the contribution of the constant density to the pressure:

∂p

∂z
= −ρg (2.15)

∂p

∂z
= −ρ0g − (ρ− ρ0)g (2.16)

∂

∂z
(p+ ρ0gz) = −(ρ− ρ0)g (2.17)

∂

∂z

(
p

ρ0
+ gz

)
= −ρ− ρ0

ρ0
g (2.18)

• If one subtracts from the pressure p the hydrostatic pressure due to a constant density ρ0, one
obtains the generalized pressure (apart from a constant factor ρ0):

q =
p

ρ0
+ gz (2.19)

The buoyancy b is given by the state equation ρ(T, S):

b = −ρ(T, S)− ρ0
ρ0

g (2.20)

Under the hydrostatic approximation, the generalized pressure and the buoyancy are related by:

∂q

∂z
= b (2.21)

Instead of working with pressure p and density ρ, some ocean models work with generalized pressure
q and buoyancy b. The effect of rounding errors due to the finite precision of floating number is
smaller with the later (Can you explain why the rounding error is smaller?).

8

• Since the vertical velocity is much smaller than the horizontal velocity, the Coriolis force in the
horizontal plane is generally simplified as:

2Ω ∧ v = fez ∧ u− 2Ω cos(ϕ)u ez + 2Ωcos(ϕ)w ex (2.22)

∼ fez ∧ u (2.23)

where f = 2Ω sin(ϕ) is called the Coriolis frequency, ϕ is the latitude, Ω is the the norm of the
vector Ω and 2Ω = 2Ωcos(ϕ)ey + 2Ω sin(ϕ)ez

• If a model is hydrostatic, non-hydrostatic effects such as deep water formation have to
be parametrized.

Figure 2.2: A drifting buoy set in motion by strong westerly winds in the Baltic Sea in July 1969

2.4 Shallow water equations

H

η

h

z = 0

z < 0

z > 0

Figure 2.3: Convention for the surface elevation η, bottom depth H and total height of the water column
h.

9

From the continuity equation, one can derive the equation for the surface elevation η:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.24)

Bottom boundary is defined by the equation z − H(x, y) = 0. A vector normal to this surface is(
−∂H

∂x ,−
∂H
∂y , 1

)
. The scalar product of the velocity v and this vector must be zero. Thus the bottom

boundary conditions (z = −H) is:

w = u
∂H

∂x
+ v

∂H

∂y
(2.25)

Equivalently:

d

dt
(z −H) = 0 (2.26)

The surface boundary is defined by the equation z − η = 0. Now the surface is moving! The surface
boundary condition (z = η):

d

dt
(z − η) = 0 (2.27)

The vertical velocity for z = η becomes:

w =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
(2.28)

Integration over the fluid depth:

U =

∫ η

−H

u dz (2.29)

V =

∫ η

−H

v dz (2.30)

Total depth is given by:

h = η +H (2.31)

Recall the “differentiation under the integral sign” theorem:

d

dx

(∫ b(x)

a(x)

f(x, t) dt

)
= f(x, b(x)) · b′(x)− f(x, a(x)) · a′(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t) dt (2.32)

Applied to the vertical integral of the u:∫ η

−H

∂u

∂x
dz =

∂U

∂x
− u(x, y, η)

∂η

∂x
+ u(x, y,−H)

∂H

∂x
(2.33)

idem for v:

∫ η

−H

∂v

∂y
dz =

∂V

∂y
− v(x, y, η)

∂η

∂y
+ v(x, y,−H)

∂H

∂y
(2.34)

The term in w:

∫ η

−H

∂w

∂z
dz = w(x, y, η)− w(x, y,−H) (2.35)

=
∂η

∂t
+ u(x, y, η)

∂η

∂x
+ v(x, y, η)

∂η

∂y
(2.36)

−u(x, y,−H)
∂H

∂x
− v(x, y,−H)

∂H

∂y
(2.37)

10

Combining all these:

∫ η

−H

∂u

∂x
+
∂v

∂y
+
∂w

∂z
dz = 0

=
∂U

∂x
− u(x, y, η)

∂η

∂x
+ u(x, y,−H)

∂H

∂x

+
∂V

∂y
− v(x, y, η)

∂η

∂y
+ v(x, y,−H)

∂H

∂y

+
∂η

∂t
+ u(x, y, η)

∂η

∂x
+ v(x, y, η)

∂η

∂y

−u(x, y,−H)
∂H

∂x
− v(x, y,−H)

∂H

∂y

Finally

∂η

∂t
+
∂U

∂x
+
∂V

∂y
= 0 (2.38)

If the fluid has a constant density and the atmospheric pressure is uniform, then

p(x, y, z) = ρ0g(η − z) (2.39)

The gradient pressure terms becomes:

∂p

∂x
= ρ0g

∂η

∂x
(2.40)

If there is no friction, then one obtains the shallow water equation which are independent on z:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g ∂η

∂x
(2.41)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g ∂η

∂y
(2.42)

∂η

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0 (2.43)

If initially, the velocity is independent of z, then it will stay uniform along the depth dimension.
U = hu and V = hv. By multiplying by these following terms h, one obtains after rearrangement:

h
∂u

∂t
=

∂U

∂t
− u

∂η

∂t
(2.44)

hu
∂u

∂x
=

∂(uU)

∂x
− u

∂U

∂x
(2.45)

hv
∂u

∂y
=

∂(vU)

∂y
− u

∂V

∂y
(2.46)

Note that the sum of the last terms is zero (idem for v). An alternative formulation is thus:

∂U

∂t
+
∂(uU)

∂x
+
∂(vU)

∂y
− fV = −gh∂η

∂x
(2.47)

∂V

∂t
+
∂(uV)

∂x
+
∂(vV)

∂y
+ fU = −gh∂η

∂y
(2.48)

∂η

∂t
+
∂U

∂x
+
∂V

∂y
= 0 (2.49)

In summary, these are the assumptions:

11

• fluid is homogeneous

• uniform atmospheric pressure

• no friction

Because bottom friction and surface friction are rarely negligible they are added a posteriori to the
momentum equation by integration the vertical friction term of the water column:∫ η

−H

∂

∂z

(
ν
∂u

∂z

)
dz = τx(z = η) + τx(z = −H) (2.50)

If the fluid is not homogeneous and its density variations are known, then an additional term called
the baroclinic pressure gradient is included in equations (2.47) and (2.48). The shallow water equations
are also solved in three-dimensional numerical ocean models to simulate the evolution of the free surface.

The rigid lid approximation neglects the sea surface height variations in the continuity equation:

∂U

∂x
+
∂V

∂y
= 0 (2.51)

The surface elevation is no longer computed prognostically, but is chosen such that the previous is
equations are satisfied. This approximations removes surface gravity waves. Surface gravity waves are
fast waves (wave speed of

√
gH) and introduce thus a sever CLF stability criterion.

2.5 Quasi-Geostrophic dynamics

Quasi-Geostrophic equations approximate the flow of the ocean if the temporal Rossby number, the
Rossby number and the Ekman number are much smaller than one,

RoT = Acceleration
Coriolis

=
1

fT
≪ 1 (2.52)

Ro = Inertia
Coriolis

=
U

fL
≪ 1 (2.53)

Ek = Vert. friction
Coriolis

=
ν

fH2
≪ 1 (2.54)

In this case, the pressure gradient is mostly balanced by the Coriolis force (geostrophic equilibrium).
It is also assumed that the density variations ρ′(x, y, z, t) around a average density profile ρ̄(z) are small:

ρ = ρ̄(z) + ρ′(x, y, z, t) |ρ̄| ≫ |ρ′| (2.55)

Due to the hydrostatic equilibrium, the pressure can be decomposed in a similar way:

p = p̄(z) + p′(x, y, z, t) |p̄| ≫ |p′| (2.56)

The quasi-geostrophic equations are derived by substituting horizontal velocity components by the
corresponding pressure gradient in the momentum equations, which gives a evolution equations for the
potential vorticity q and an equations for the stream function ϕ:

∂q

∂t
+ J(ψ, q) = ν

∂2

∂z2
∇2ψ (2.57)

q = ∇2ψ +
∂

∂z

(
f20
N2

∂ψ

∂z

)
+ β0y (2.58)

where the Jacobian J is defined by:

J(ψ, q) =
∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
(2.59)

12

The velocity components, pressure and density are obtained by:

u = −∂ψ
∂y

(2.60)

v =
∂ψ

∂x
(2.61)

w = − f0
N2

(
∂2ψ

∂t∂z
+ J

(
ψ,
∂ψ

∂z

))
(2.62)

p′ = ρ0f0ψ (2.63)

ρ′ = −ρ0f0
g

∂ψ

∂z
(2.64)

Since only one evolution equations has to be solved, the models based on the quasi-geostrophic
equations are numerically more efficient than model based on the primitive equations. However, the
approximation need to derive the quasi-geostrophic equations limit their applicability.

Exercise 3:

We consider the 2d-quasi-geostrophic system with viscosity on an f -plane governed by:

∂q

∂t
+ J(ψ, q) = AH∇2q +BH∇4q (2.65)

q = ∇2ψ (2.66)

where AH = 0.5 m2/s and BH = 1.6015 1010 m4/s. The initial condition is given by:

r̃ = r(1 + ϵ cos(2θ))/L (2.67)

ψ0 = exp(−r̃2)L2ω0 (2.68)

where r and θ are the polar coordinates. The parameter ϵ = 0.03 introduces a perturba-
tion of the eddy’s structure (L = 100 km, ω0 = 10−5 s−1). The domain is a square
[−10L, 10L] × [−10L, 10L]. As time step 1000 s is suggested. For simplicity, q and ψ are
prescribed to zero at the boundary.

Exercise from “Introduction to Geophysical Fluid Dynamics” by B. Cushman-Roisin and J.-M.
Beckers.

13

Chapter 3

Boundary conditions

Contents
3.1 Surface boundary conditions . 14

3.1.1 The momentum flux . 14

3.1.2 Heat flux . 15

3.2 Bottom boundary conditions . 17

3.3 Lateral boundary condition . 17

3.3.1 Coast line . 17

3.3.2 Open-ocean boundary conditions . 18

The equation of the previous chapter could not be solved for a fluid with finite extent without
prescribing what happen at the boundary of the fluid.

3.1 Surface boundary conditions

At the ocean surface for example, the ocean and atmosphere exchange heat, water and momentum.
These exchanges are prescribed at surface boundary conditions.

3.1.1 The momentum flux

The winds at the air-sea interface drag the surface water along its direction. This wind stress τ gives
the momentum flux between ocean and atmosphere and it is parameterized by:

τ = CDρa∥ua∥ua (3.1)

ρa is the air density and ua the wind vector at the reference level. The drag coefficient CD is param-
eterized (e.g Kondo, 1975). The momentum flux is a vector with the same direction of the wind vector.

Exercise 4:

Equation (3.1) actually assumes that the ocean currents are much smaller than the winds (which
is in general a realistic assumption). Propose a modification of this equation to take current speed
into account.

14

3.1.2 Heat flux

The exchange of heat modifies the temperature of the ocean since the temperature is directly related to
the internal energy Ei:

Ei = cpρT (3.2)

where cp is the heat capacity at constant pressure and ρ is the density of sea-water. The turbulent
temperature fluxes at the ocean surface are prescribed through the ocean-atmosphere exchange:

νE
∂T

∂z
=

Qt

cpρ
(3.3)

where Qt is the net thermal energy reaching the ocean surface per unit of length squared. Qt is the
sum of:

Net long-wave radiation

• corresponds to the infrared radiation that the ocean surface emits similar to the back-body radiation
at a given temperature.

• can be reflected back to the ocean by the presence of clouds.

• the atmosphere emits also long-wave radiation that it partially absorbed by the ocean surface.

• the net long-wave radiation is the total flux due to these effects and it depends thus mainly on
sea-surface temperature, air temperature and cloud fraction.

Latent heat flux

• due to a difference in the water vapor content of the air at the ocean surface and at the reference
level.

• this gradient induces evaporation or condensation.

• to this mass transfer corresponds a heat exchange, which is equal to the rate of vaporisation times
the latent heat of evaporation L.

The latent heat flux is parameterized as (Rosati and Miyakoda, 1988; Castellari et al., 1998):

QL = CLLρa∥ua∥(qs − qa) (3.4)

where ρa is the air density, ua is the wind vector, qs is the specific humidity of saturated air at
temperature Ts, qa is specific humidity of air. For an air pressure pa expressed in hPa, qa is obtained by
the air temperature Ta and the relative humidity r and qs is obtained from the sea surface temperature
Ts by:

qa = res(Ta, pa)
ϵ

pa
(3.5)

qs = es(Ts, pa)
ϵ

pa
(3.6)

where ϵ = 0.622 is the ratio of the gas constants of dry air and water vapor and es is the water vapour
saturation pressure . (see appendix D).

15

Sensible heat flux

• due to the temperature difference between the air at the ocean surface and the air at the reference
level.

• heat exchanged by conduction and is proportional to this temperature gradient, the heat conduc-
tivity of the ocean surface and the specific heat of air at constant pressure

• for the air temperature at the ocean surface, the sea surface is taken assuming a local equilibrium.

The latent heat flux and the sensible heat flux are parameterized by classical bulk turbulent transfer
formulas (Rosati and Miyakoda, 1988; Castellari et al., 1998):

QH = CHcpaρa∥ua∥(Ts − Ta) (3.7)

where cpa is the heat capacity of air at constant pressure. Expressions (3.4) and (3.7) are well es-
tablished bulk parameterizations for the latent and sensible heat flux. Matter of discussions are however
the exchange coefficient CH (Stanton number) and CE (Dalton Number). Numerous parameterizations
are proposed in the literature (e.g Castellari et al., 1998; Kondo, 1975).

The solar heat flux

• The solar (or short-wave) heat flux is sometimes included in the net heat flux at the ocean surface.

• However, the solar energy penetrates into the water column and heat the water not only at the
surface.

• The solar heat flux is thus more realistically described as a energy source in the temperature
equations:

∂T

∂t
= · · ·+ 1

cpρ0

∂I

∂z
(3.8)

By considering only two visible frequencies, the radiation flux I as a function of depth can be described
by the following equation (z = 0 at the surface and negative in water):

I(z) = |Qs| (Aeg1z + (1−A) eg2z) (3.9)

where Qs is the light intensity at the surface, A = 0.58 is the fraction long-wave solar energy and
g1 = 0.35 m−1 and g2 = 23.0 m−1 are the absorption coefficients of the shorter wave (“blue”) and longer
wave (“red”) solar energy respectively of the visible spectrum. This distribution of the light intensity
corresponds to the water of type I according to the classification of Jerlov (1968).

Exercise 5:

Explain on the basis of equation (3.9) why objects immersed in the ocean appear blue.

16

3.2 Bottom boundary conditions

Figure 3.1: Bottom boundary layer over a smooth ocean floor (panel A) and a rough boundary (panel
B), from Robert (2008)

• The ocean floor is generally treated as impermeable boundary.

• The velocity normal to the ocean floor is set to zero.

• Similar to the air-sea boundary, the ocean floor also exerts a friction on the flow parallel to ocean
flow. This friction is often parameterized a quadratic or logarithmic friction laws.

• Bottom friction is crucial for tidal simulation.

• Prescribing the horizontal velocity components to zero is only a possibility if the bottom boundary
layer is well resolved.

• Analytical ocean models use in general a linear bottom drag not because it is more realistic, but
because it is much easier to obtain a analytical solution.

Exercise 6:

Explain why bottom friction is more important for simulating tides than for the general ocean
circulation.

When a numerical ocean model is coupled to a sediment transport models, the bottom floor itself
can vary in time over sufficiently long time scales.

3.3 Lateral boundary condition

3.3.1 Coast line

Formally, the later boundary at the coastline is similar to the bottom boundary condition. The coastline
is generally treated as a wall. The velocity perpendicular to the coast-line is zero. Different options for
the boundary conditions for the flow parallel to the coast-line are possible:

• no-slip: The velocity tangent to the coastline is set to zero (if lateral boundary layer is resolved).

• lateral drag: Turbulent viscosity is prescribed at the coastline, for example proportional to the
square of the velocity (if later boundary layer is not resolved).

• free slip: The flow moves freely parallel to the coast (applicable if later boundary layer is much
smaller than the grid size such that its effect can be ignored).

17

Rivers represent a fresh-water flux into the model domain. They can be represented as a boundary
condition with prescribed salinity (and possibly temperature) and velocity. Rivers can also be modeled
as a point source for salinity (and temperature) in the evolution equation of the tracers.

For applications such as storm surge modeling, the coastline can move due to inundation and the
retreat of the water. Grid-cells can thus be either wet or dry. Special wetting and drying scheme
have been developed for these applications. The challenge of these methods is to provide a numerical
stable and volume conserving scheme.

3.3.2 Open-ocean boundary conditions

For high-resolution application, only a small portion of the global ocean can be covered. In these cases,
it is necessary to introduce boundary conditions at the open-sea boundary.

Dirichlet boundary conditions

The simplest open-ocean boundary condition is to prescribe the values of the model variables at the open
boundary (Dirichlet or clamped boundary conditions).

ϕ = ϕext at the open-boundary (3.10)

where ϕ is any model variable. This approach however is rarely used since it sufferers from several
drawbacks:

• only in rare cases there are sufficient observations to provide ϕext (a larger-scale model is thus
often used)

• waves approaching the open boundary are in general reflected at the open boundary

• if the external data is not compatible with the model results at the boundary (due to problems in
the model or in the external data) a spurious boundary layer is created with strong gradients. A
strong spurious density gradient generate a strong spurious geostrophic flow which exacerbate the
problem and can lead to numerical instabilities.

Radiation boundary conditions

To address the problem of wave reflection, the radiation boundary condition are constructed to let a
wave propagate freely out of the model domain:

∂ϕ

∂t
+ c

∂ϕ

∂n
= 0 (3.11)

where n is the dimension perpendicular to the open-boundary and c is the wave propagation speed.
For the Sommerfeld condition, c is constant and it must be determined a priori. Orlanski (1976) proposed
a scheme where the propagation speed is determined by the flow one grid point from the open boundary
and at the previous time step by:

c = −∂ϕ
∂t
/
∂ϕ

∂n
(3.12)

The method returns the correct propagation speed for a single wave (propagating at a constant speed)
reaching the boundary at normal incidence. But the scheme can be problematic if the solution contains
several waves at different propagation speed.

External data can be included in the radiation boundary condition by introducing an relaxation term.

∂ϕ

∂t
+ c

∂ϕ

∂n
=
ϕext − ϕ

τ
(3.13)

where τ is the relaxation time-scale. The smaller the relaxation time-scale, the stronger the model
is forced by the external data. The relaxation time-scale is in general adjusted to reflect the accuracy of
the external data.

18

Flow relaxation

To allow a smoother transition between the external data and the model results, Davis (1976) introduced
the flow relaxation method: the relaxation term is not only active at the open-boundary but also in some
zone near the boundary. The relaxation is also added to the prognostic equations:

∂ϕ

∂t
+ ... =

ϕext − ϕ

τ(x, y)
(3.14)

The coefficient 1/τ(x, y) defines the flow relaxation zone and is only non-zero near the boundary.

Flather boundary condition

These previous boundary conditions do not take the dynamical relationship between the variables into ac-
count. (Flather, 1976) proposed a boundary condition for the shallow water equations. The propagation
of a surface gravity wave approaching a boundary is described as:

∂η

∂t
+
√
gh
∂η

∂n
= 0 (3.15)

where h is the water depth. The 1-D approximation of the continuity equations can be written as:

∂η

∂t
+ h

∂v̄n
∂n

= 0 (3.16)

By subtracting the previous equations, one obtains

∂

∂n

(
v̄n −

√
g

h
η

)
= 0 (3.17)

By integrating this equations across the open boundary, one obtain the Flather-boundary condition:

v̄n −
√
g

h
η = v̄extn −

√
g

h
ηext (3.18)

The Flather boundary condition provides only one constrain for two variables (elevation and normal
velocity). The Flather boundary condition is often augmented by one of the boundary condition proposed
by Chapman (1985), such as:

ηn+1
b =

ηnb + µeη
n+1
b+1

1 + µe
(3.19)

where µe =
√
gh ∆t

∆xn
, b is the grid index of the model boundary, b + 1 is the index of the first grid

point inside the model domain. This boundary condition can be obtained discretizing equations (3.15)
using finite differences.

Concluding remarks for open boundaries:

• A more rigorous framework for deriving open boundary condition is the method of characteristics.
The linearized system of equations are transformed into a system of independent equations for
the characteristics. Each of these characteristics has its own propagation speed. The sign of the
propagation speed at the boundary determines if it is an incoming or out-coming characteristic.
An interesting discussion can be found in (Blayo and Debreu, 2005).

• An open-ocean boundary conditions for the primitive equations is a delicate task since they ad-
mit a broad spectrum of waves. Barotropic waves are in general faster than the ocean currents
(sub-critical regime) while high order internal waves are slower than ocean currents (super-critical
regime).

• The boundary condition play also a crucial role in model nesting: a coarse-grid model provides
boundary condition of a fine-grid model. In one-way nesting, the coarse-grid model is independent
of the fine-grid model. If in turn, the fine-grid model results are incorporated into the coarse-grid
model one speaks of two-way nesting.

19

Model nesting

Figure 3.2: Example of 1-way nesting of ROMS in HYCOM (Barth et al., 2008). Animation

20

lon.

la
t.

 6oE 7oE 8oE 9oE 10oE 11oE

 30’

 43oN

 30’

 44oN

 30’

50
0

500

50
0

50
0

20
00

20
00

 Marseille

Nice

Capo RossoCapo Rosso

Corsica

 Corsica Channel Corsica Channel

 NC

WCC

 ECC ECC

ITALY

FRANCE

A
B C

 D

Figure 3.4: The Ligurian Sea with the three major currents: ECC, WCC and NC. The results of the
model will be illustrated in section C. The solid line represents the interface between the fine and inter-
mediate grid resolution models. The 500 m and 2000 m isobaths are also shown. While the bathymetry
in the Ligurian Sea is rather steep at the French coast, there is a continental shelf in the western part
near the Italian coast. The Corsica Channel separates this plateau from the Corsica Island.

A
?

B
?
C
?

D
?

E
?

•

•

•

•

•

•

•

•

•

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

>

>

>

>

>

>

>

>

>

>

>

>

•

•

•

•

•

•

•

•

•

∧

∧

∧

∧

∧

∧

∧

∧

∧

∧

>

>

>

>

>

>

>

>

>

Figure 3.3: The relative position of the coarse (thick lines) and fine grid (fine lines). The dots (•) show
the position of scalar variables, > the zonal velocity and ∧ the meridional velocity component. The large
symbols are associated to the coarse grid and the small symbols to the fine grid. For clarity, only the
position of the variables imposed by boundary conditions are showed for the fine grid. The boundary
conditions of the scalars and the tangent (to the nesting boundary) velocities interpolated from columns
A and D are imposed in column B. The normal velocity component is imposed in column C. The average
values of the scalars and the tangent velocities are injected in the coarse grid model, starting with column
D. For the normal velocity, the feedback begins with column E (Barth et al., 2005).

21

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Mean, 1/60° model, 2−way nested

13
.1

13.113.2
13.3

13.4

13.4

a

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Mean, 1/60° model, 1−way nested

13
.1

13.2
13.3

13.4
c

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Mean, 1/20° model, 1−way nested

13.1

13.113.2
13.3 13.4

e

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Standard deviation, 1/60° model, 2−way nested

0.1
0.1 0.20.2

0.2

b

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Standard deviation, 1/60° model, 1−way nested

0.1 0.1
0.

1

0.20.2

0.2

d

0 20 40 60
−1000

−800

−600

−400

−200

0

distance from coast (km)

de
pt

h
(m

)

Standard deviation, 1/20° model, 1−way nested

0.1

0.1 0.2

f

Figure 3.5: Mean temperature and standard deviation (in °C) at section C of figure 3.4 for the two-way
(top) and the one-way nested model at 1/60° resolution (centre). The two bottom figures are the results
of the 1/20° model for the one-way nesting strategy.

22

Chapter 4

Model grids

Contents
4.1 Vertical coordinate . 23

4.1.1 General coordinate transformation . 24

4.1.2 z-coordinate . 28

4.1.3 σ-coordinate . 29

4.1.4 Isopycnals . 33

4.2 Horizontal grid . 33

4.2.1 Structured mesh . 33

4.2.2 Grid staggering . 38

4.2.3 Unstructured mesh . 39

4.3 Time stepping . 41

• For a stratified fluid such as the ocean, the representation of gravity is crucial.

• In the vast majority in ocean models, the model grid lines are vertically aligned because of the the
dominance of later versus vertical transport and hydrostatic balance.

• The horizontal and vertical grid are therefore be considered separately as two successive steps to
generate the tri-dimensional model grid.

4.1 Vertical coordinate

The choice of vertical coordinate system is the single most important aspect of an ocean model’s design
(Chassignet and Malanotte-Rizzoli, 2000; Chassignet et al., 2000).

Different regimes are found in the vertical that a numerical ocean model has to simulated and a
vertical coordinate has to resolve:

• Surface mixed layer: higher resolution near the surface is necessary to represent air-sea heat, fresh-
water and momentum flux. Intense turbulent mixing and non-hydrostatic convection takes place
in this weakly stratified layer. Those processes are in general parameterized. The currents in
this layer are strong affected by the wind stress (surface Ekman layer). Below this layer, large
temperature and salinity variation are in general observed (thermocline and halocline)

• Ocean interior: this part of the water column is in general well stratified. This stratification
constrain the movement of tracers along direction of constant density. Water mass properties are
thus maintained over very long time scales.

23

• Ocean bottom: bottom boundary layer exert friction on the overlying fluid. This is especially
important for shallow areas. In some places, dense water masses flows down along the ocean floor.
These overflows are crucial in the formation of deep water. The bottom depth (i.e. the geometry of
the basin) itself is also very important since the flow tends to follow lines of constant f/H (under
unstratified conditions).

Figure 4.1: Vertical section of the WFS ROMS model (http://ocgmod1.marine.usf.edu/WFS)

4.1.1 General coordinate transformation

The easiest way to discretize the water column is to use the depth. But this is only one possibility. First,
we examine the general coordinate system transformation (x, y, z, t) → (x′, y′, z′, t′):

x′ = x (4.1)

y′ = y (4.2)

z′ = z′(x, y, z, t) (4.3)

t′ = t (4.4)

The transformed variable z′ may vary not only in space but also with time. This transformations is
only invertible if z′ is a uniformly increasing or decreasing function of z. We need now to express the
primitive equations in the transformed coordinate system. Following equation (B.12) of appendix B, the
derivative are transformed as:

∂f

∂x
=

∂f

∂x′
+
∂f

∂z′
∂z′

∂x
(4.5)

∂f

∂y
=

∂f

∂y′
+
∂f

∂z′
∂z′

∂y
(4.6)

∂f

∂z
=

∂f

∂z′
∂z′

∂z
(4.7)

∂f

∂t
=

∂f

∂t′
+
∂f

∂z′
∂z′

∂t
(4.8)

24

http://ocgmod1.marine.usf.edu/WFS

The derivative in x is not simply equal to the derivative in x′. Indeed, the derivative in x is taken for
constant z while the derivative in x′ is taken along constant z′. Since z′ may depend on x, both are not
necessarily equal. Note also the similarity in the transforming of the derivatives in x, y and t.

A central quantity in coordinate transformation is the Jacobian. The Jacobian of this transformation
is

J =
∂z

∂z′
(4.9)

The Jacobian corresponds to the local stretching of the new coordinate system relative to the old
coordinate system.

The material derivative is often used to express the primitive equations. In cartesian coordinate,
it is defined by:

df

dt
=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
(4.10)

In the transformed coordinate, the material derivative becomes:

df

dt
=
∂f

∂t′
+ u

∂f

∂x′
+ v

∂f

∂y′
+ ω

∂f

∂z′
(4.11)

where ω is defined by:

ω =
∂z′

∂t
+ u

∂z′

∂x
+ v

∂z′

∂y
+ w

∂z′

∂z
(4.12)

The first three terms of the rhs (right hand side) of the previous equations correspond to the material
derivative of the surfaces of constant z′. Jω is thus the movement of the fluid relative to the surfaces of
constant z′

The volume conservations

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (4.13)

becomes (appending C)

∂J

∂t′
+

∂

∂x′
(Ju) +

∂

∂y′
(Jv) +

∂

∂z′
(Jω) = 0 (4.14)

with the volume conservation, the material derivative for a scalar f multiplied by the Jacobian J can
be expressed in the following flux conservative form:

J
df

dt
= J

(
∂f

∂t′
+ u

∂f

∂x′
+ v

∂f

∂y′
+ ω

∂f

∂z′

)
=

∂

∂t′
(Jf) +

∂

∂x′
(Jfu) +

∂

∂y′
(Jfv) +

∂

∂z′
(Jfω) (4.15)

Numerical models are generally based on the flux form of the evolution equations since they lead
more easily to conservative schemes. The advection terms are formally similar to their expression in
Cartesian coordinates where tracer f is replaced by Jf . The Jacobian takes into account that the real
volume of a model grid cell varies in space and time.

The appearance of the Jacobian J to express the material derivative in conservative form is not
surprising, since it is also necessary to perform integration in a different coordinate system:∫

Ω

f(x, y, z) dx dy dz =

∫
Ω′
f(x′, y′, z′) J dx′ dy′ dz′ (4.16)

The equations governing the evolution of a tracers includes beside advection also the diffusion. The
vertical diffusion in the transformed space would give:

∂

∂z

(
ν
∂f

∂z

)
=

1

J

∂

∂z′

(
ν

J

∂f

∂z′

)
(4.17)

25

The horizontal velocity components, the advection and diffusion terms are similar to those of tracer.
The Corilois and buoyancy terms do not contain a spatial derivative. Thus they are not changed by
the coordinate transformation. The remain term to complete the momentum equation is in the pressure
gradient. The x-component of the pressure gradient becomes:

∂p

∂x
=

∂p

∂x′
+
∂p

∂z′
∂z′

∂x
(4.18)

The pressure gradient is thus the sum of two components. If the pressure is only a function of z (as it
is approximatiely the case in the ocean), the horizontal pressure gradient is zero and both terms should
cancel out each other. This is in general not the case for the descretized pressure gradient. The residual
pressure gradient drives a spurious current. This is the so called pressure gradient problem (e.g Haney,
1991; Deleersnijder and Beckers, 1992).

−5 0 5

x 10
4

−1000

−500

0
Density

1030

1035

1040

1045

−4 −2 0 2 4

x 10
4

−800

−600

−400

−200

0
Pressure gradient

−0.01

−0.005

0

0.005

0.01

−4 −2 0 2 4

x 10
4

−800

−600

−400

−200

0
Pressure gradient along sigma

−200

0

200

−4 −2 0 2 4

x 10
4

−800

−600

−400

−200

0
Pressure gradient due to tilting

−200

0

200

Figure 4.2: “Naive” pressure gradient discretization for the sea mount problem

26

Figure 4.3: Sea mount test-case with ROMS using the spline density Jacobian formulation by Shchepetkin
and McWilliams (2003). Animation of the sea mount simulation.

The vertical variation of pressure are known because of the hydrostatic equilibirum:

∂p

∂z
=

1

J

∂p

∂z′
= −ρg (4.19)

The pressure gradient in transformed coordinate can thus be written as:

∂p

∂x
=

∂p

∂x′
− ρgJ

∂z′

∂x
(4.20)

=
∂p

∂x′
+ ρg

∂z

∂x′
(4.21)

since

∂z′

∂x
= −∂z

′

∂z

∂z

∂x′
(4.22)

= − 1

J

∂z

∂x′
(4.23)

The pressure gradient (equation 4.21) can further be transformed into:

∂p

∂x
=

∂p

∂x′
+ ρ

∂gz

∂x′
+ gz

∂ρ

∂x′
− gz

∂ρ

∂x′
(4.24)

=
∂P

∂x′
− gz

∂ρ

∂x′
(4.25)

where P = p+ ρgz is the Montgomery potential.

27

The pressure gradient can be interpreted as the gradient of the pressure obtained by vertical inter-
polated of the pressure of the neighboring cells (figure 4.1.1). However, if the slope of the grid-lines
increases, the interpolated can become an extrapolation. The depth at which the vertical pressure gra-
dient is evaluated is in this case no longer consistent with the depth of the horizontal pressure gradient.
This problem is called hydrostatic consistency.∣∣∣∣∣ ∂x

′

∂z
∂z′

∂z

∣∣∣∣∣ ≤ ∆z′

∆x
(4.26)

To reduce the pressure gradient problem, it is thus not sufficient to increase the vertical resolution
alone. Hydrostatic consistency requires that vertical and horizontal resolution are refined.

x, y

z pressure gradient

pressure
interpolated pressure

pressure is
vertically interpolated

pressure is
vertically extrapolated

Figure 4.4: Horizontal pressure gradient and hydrostatic consistency

4.1.2 z-coordinate

For model using the z-coordinate, the depth of each model levels depends only on z.
Advantages:

• simple numerical discretization and visualization and interpretation of model results

• surface mixed layer can be naturally represented and resolved pressure gradient

Disadvantages:

• ignore small bottom slope. This leads to problem in representing potential vorticity variations

• unrealistic mixing for bottom flow (bottom boundary layer)

28

• later mixing and advection along constant-density surfaces is cumbersome and need a high number
of vertical levels to adequately resolve those processes. These model have in general a unrealistic
large cross-isopycnal mixing.

Improvements of the z-coordinate to include a better representation of the bottom topography (Ad-
croft et al., 1997):

• Partial cell approach. The lowest grid cell can have a thickness that is a function of latitude and
longitude. The depth of a water column is no longer restricted to finite set of representable water
depth.

• Shaved cells: The bottom grid cell is no longer a cuboid. The depth of all bottom vertexes are
allowed to follow the bottom topography. Shaved cells are thus more realistic than partial cells,
however they shaved are numerically less efficient that partial cells.

Figure 4.5: Different representation of the ocean floor in z-coordinate ocean models: the traditional
full-cell approach (top), partial cells (middle) and shaved cells (bottom). This figure is based on figure
3 from (Griffies et al., 2000).

4.1.3 σ-coordinate

The σ-coordinate is defined by:

σ =
z − η

H + η
(4.27)

or

z = η + (H + η)σ (4.28)

for surface z = η −→ σ = 0
for bottom z = −H −→ σ = −1

With a vertical stretching function C(σ):

z = η + (H + η)C(σ) (4.29)

C(σ) is a function that defines the vertical grid spacing:

29

0 2 4 6 8 10

-140

-120

-100

-80

-60

-40

-20

0

z

0 2 4 6 8 10

-140

-120

-100

-80

-60

-40

-20

0

sigma

Figure 4.6: z and σ coordinate. The solid black line represent the real bottom floor, gray cells are masked
cells and blue model grid.

• at the free-surface: C(0) = 0

• at the bottom C(−1) = −1.

Example of a stretching function (Song and Haidvogel, 1994):

C(σ) = (1− θB)
sinh(θS σ)

sinh θS
+ θB

[
tanh[θS(σ + 1

2)]

2 tanh(12θS)
− 1

2

]
where the parameters θS and θB control the surface and bottom streching.
Advantages:

• Realistic representation of the ocean bottom

• Well suited for shallow water

• all vertical levels are actually used (z-coordinate level run into the bottom floor and the depth of
isopycnal become zero is a density level is not present).

Disadvantages:

• The resolution of the surface mixed layer varies according to the water depth. To resolve the
mixing layer in deep, a very fine discretization of σ is necessary. To distribute the surface layer
more uniformly, a so-called s-coordinate is introduced (Song and Haidvogel, 1994; Shchepetkin and
McWilliams, 2005) which is defined using the σ-coordinate by (for a flat surface η = 0):

z′(x, y, σ) = σhmin + C(σ) (H(x, y)− hmin) (4.30)

• In general (η ̸= 0):

30

0 1 2 3

-140

-120

-100

-80

-60

-40

-20

0

20

sigma coordinate and surf. gravity. wave

4 5 6 7 8 9 10

Figure 4.7: Since the σ-levels depend on elevation, the depth vary in time. Animation of a surface gravity
wave and the movement of the coordinate system.

z′(x, y, σ, t) = S(x, y, σ) + η(x, y, t)

[
1 +

S′(x, y, σ)

H(x, y)

]
, (4.31)

S′(x, y, σ) = σhmin + C(σ) (H(x, y)− hmin) (4.32)

• Another approach, implemented in e.g. ROMS, is:

z′′(x, y, σ, t) = η(x, y, t) + [η(x, y, t) +H(x, y)] S′′(x, y, σ), (4.33)

S′′(x, y, σ) =
hmin σ +H(x, y)C(σ)

hmin +H(x, y)
(4.34)

• z′ and z′′ become the regular sigma-coordinate for hmin = 0

• It is difficult to align advection and diffusion along inclined density surfaces in the ocean interior

• pressure gradient error: The pressure gradient error is a problem near steep topography, in particu-
lar at the shelf break. Smoothing of the bathymetry is often required. The problem can be address
with the double-sigma coordinate Beckers (1991): the domain is divided in a upper and lower
region at the approximate mean depth of the shelf-break and a sigma coordinate transformation is
realized in both regions.

• Advection and diffusion along constant density surfaces is difficult.

31

-140

-120

-100

-80

-60

-40

0 2 4 6 8 10

-140

0 2 4 6 8 10

sigma

-20

0

-40

-60

-80

-100

-120

-20

0

s

Figure 4.8: σ and s coordinate

5 10 15 20 25 30 35 40 45 50 55 60 65 70

-1800

-1500

-1200

-900

-600

-300

Figure 4.9: The double-sigma coordinate: a first sigma coordinate covers the first 170 m and a second
sigma coordinate goes from 170 m down to the ocean floor.

32

4.1.4 Isopycnals

This coordinate is a close analog to the atmosphere’s entropy or potential temperature. The levels are
choosen such that the density of each level is a constant.

Advantage:

• in the ocean interior, tracers have the tendency to move along isopycnal surface. The isopycnal
coordinate is thus well suite for this transport.

• these models follow the bottom topography

• overflow can be represented more realistically than in z-models

• horizontal pressure gradient can be easily represented using the Montgomery potential (4.25).

Disadvantages:

• In unstratified conditions, such as surface and bottom boundary and during deep water formation,
density is inappropriate to provide sufficient vertical resolution.

• The range of densities can vary from sub-basin to another. It might be necessary to add density
layer for a small sub-basin which are not used at other places.

Exercise 7:

Compute and plot z, σ and isopycnal levels of a meridional section at 24 deg W in the Atlantic.
Try to choose an appropriate resolution which resolves sufficiently the mixed layer. You may use
the annual temperature and salinity mean of World Ocean Atlas 2005 to compute the density
(available here).

4.2 Horizontal grid

4.2.1 Structured mesh

Cartesian mesh

If only a limited portion of the earth is considered, then the curvature of the earth can be neglected.
The differential operator have the simplest possible form in Cartesian coordinates.

Exercise 8:

Create a model grid and the model bathymetry of the western part of the Mediterranean at 1/4
degree based on the ETOPO5 bathymetry. Choose an appropriate position of the open boundary.
Would it be better to sub-sample the bathymetry or average the bathymetry over 1/4 degree boxes?

Spherical mesh

For a spherical mesh, the domain is discretized along longitude and latitude lines. The longitude incre-
ments are normally chosen constant. The latitude increments sometimes also chosen to be constant. In
this case, the grid cells corresponds to squares at the equator and become more and more elongated rect-
angles ones approaches the poles. To obtaine grid cells which corresponds locally to squares everywhere,
the latitude increment ∆λ is equal to:

∆λ = ∆ϕ cos(λ) (4.35)

33

http://modb.oce.ulg.ac.be/mediawiki/index.php/Structure_and_application_of_numerical_ocean_models

-5 0 5 10 15 20 25 30 35

32

34

36

38

40

42

44

500 1000 1500 2000 2500 3000 3500

Figure 4.10: 1/4 degree grid of the Mediterranean Sea and model bathymetry.

34

where λ is the latitude and ∆ϕ is the longitude increment. Due to the similarity to the Mercator
projection, this grid is also called a Mercator grid. In any case, the convergence of the meridians at the
poles require a very small time step. This problem can be circumverted by rotating pole to land.

Figure 4.11: Example of a global spherical mesh including bathymetry at 1 degree resolution. Only every
ten grid line if shown.

Generalized orthogonal mesh

The curvilinear grid is defined as a change of coordinate system:

ξ = ξ(x, y) (4.36)

η = η(x, y) (4.37)

This change of coordinate system is assumed to be invertible:

x = x(ξ, η) (4.38)

y = y(ξ, η) (4.39)

Essential quantities to describe the local characteristics of the curvilinear grids are the scale factors
m and n.

35

-90 -89 -88 -87 -86 -85 -84 -83 -82 -81

25

26

27

28

29

30

0

500

1000

1500

2000

2500

3000

Figure 4.12: Example of a curvilinear mesh of the West Florida Shelf. Only one grid line of 4 is shown.

(ds)ξ =
1

m
dξ (4.40)

(ds)η =
1

n
dη (4.41)

where ds is the distance between two points at constant ξ or at constant η. If (x, y) are the Cartesian
coordinates on a plane, the scale factors m and n are:

1

m2
=

(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

(4.42)

1

n2
=

(
∂x

∂η

)2

+

(
∂y

∂η

)2

(4.43)

The derivative in the transformed coordinate system are related to the original derivative by:

∂

∂ξ
=

∂x

∂ξ

∂

∂x
+
∂y

∂ξ

∂

∂y
(4.44)

∂

∂η
=

∂x

∂η

∂

∂x
+
∂y

∂η

∂

∂y
(4.45)

Vectors are locally rotated according to:

eξ =
∂x

∂ξ
ex +

∂y

∂ξ
ey (4.46)

eη =
∂x

∂η
ex +

∂y

∂η
ey (4.47)

36

Those vectors are assumed to be orthogonal:

eξ · eη = 0 =
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η
(4.48)

Jacobian of the change of coordinate system can be written as:

J =
∂(x, y)

∂(η, ξ)
=
∂x

∂η

∂y

∂ξ
− ∂x

∂ξ

∂y

∂η
=

1

mn
(4.49)

indeed after some calculations one obtains,

J2 =
∂x

∂η

2 ∂y

∂ξ

2

− 2
∂x

∂η

∂x

∂ξ

∂y

∂η

∂y

∂ξ
+
∂x

∂ξ

∂y

∂η
(4.50)

=
∂x

∂η

2 ∂y

∂ξ

2

+
∂x

∂η

2 ∂x

∂ξ

2

+
∂y

∂η

2 ∂y

∂ξ

2

+
∂x

∂ξ

2 ∂y

∂η

2

(4.51)

=

(
∂x

∂η

2

+
∂y

∂η

2)(∂x
∂ξ

2

+
∂y

∂ξ

2)
(4.52)

=
1

m2n2
(4.53)

The velocity in the curvilinear coordinate system (u, v) is obtained from the velocity in the Cartesian
system by:

u =
∂x

∂ξ
vx +

∂y

∂ξ
vy (4.54)

v =
∂x

∂η
vx +

∂y

∂η
vy (4.55)

To express the dynamical equations using the variables for the curvilinear system, one need to substi-
tute the variables of the old coordinate system by the transformed one. For the derivative, one obtains,

∂

∂x
= mn

∂y

∂η

∂

∂ξ
−mn

∂y

∂ξ

∂

∂η
(4.56)

∂

∂y
= −mn∂x

∂η

∂

∂ξ
+mn

∂x

∂ξ

∂

∂η
(4.57)

and the velocity

vx = mn
∂y

∂η
u−mn

∂y

∂ξ
v (4.58)

vy = −mn∂x
∂η
u+mn

∂x

∂ξ
v (4.59)

For example the advection of a tracer is written as:

vx
∂

∂x
T + vy

∂

∂y
T = m2n2(

∂y

∂η
u− ∂y

∂ξ
v)(

∂y

∂η

∂

∂ξ
− ∂y

∂ξ

∂

∂η
T) (4.60)

+m2n2(−∂x
∂η
u+

∂x

∂ξ
v)(−∂x

∂η

∂

∂ξ
T +

∂x

∂ξ

∂

∂η
T) (4.61)

= m2u
∂

∂η
T + n2v

∂

∂ξ
T (4.62)

Because the transformed coordinate system is locally orthogonal, the differential operator can be
written in a compact form similar to the Cartesian system. The essential difference if the appearance of
the factor m and n. For example the Laplacian can be written as:

∇2ϕ = mn
∂

∂ξ

(
m

n

∂

∂ξ
ϕ

)
+mn

∂

∂η

(
n

m

∂

∂η
ϕ

)
(4.63)

37

unstaggered staggered
u

T

Figure 4.13: Staggering of variables in 1 dimensions

4.2.2 Grid staggering

By placing variables at different location, the accuracy of the discretization scheme can be improved
(Arakawa, 1966; Arakawa and Lamb, 1981).

If variables are necessary on other location, spatial average (which amount to interpolation) is nec-
essary. Since spatial averaging smoothes the solution, it introduces numerical diffusion. Some scheme
with spatial have also numerical modes with a structure of a check-board. In the averaged field, the high
frequency structure disappears and there is thus no dynamical feedback to dissipate the check-board
pattern. For example, the 1 dimensional shallow water equations on a unstaggered grid:

ηn+1 − η

∆t
= −Hui+1 − ui−1

2∆x
(4.64)

un+1 − u

∆t
= −g

ηn+1
i+1 − ηn+1

i−1

2∆x
(4.65)

The rhs are finite differences over 2∆x. These terms can also be viewed as differences over ∆x of
averaged values. These admit the following as a stationary solution:

η = Aeiπi (4.66)

u = Beiπi (4.67)

The sign of the elevation and velocity changes every grid point. In general a numerical scheme and
a grid is sought which minimizes the need of spatial averaging.

Exercise 9:

Discretize the 1D linear shallow water equations on a staggered grid with a wall at x = 0 and
x = L. Determine and stability criterion and solve the discretized equations numerically.

∂h

∂t
= −∂hu

∂x
(4.68)

∂u

∂t
= −g ∂h

∂x
(4.69)

where h is 30 m. The domain is 100 km (L) long and discretized with 100 grid points. The
average depth (h) is 30 m and the initial h given by:

h(x) = h+ a exp(−(x/b)2) (4.70)

where a = 2 m and b = 5 km. The fluid is initially at rest.

38

(Partial answer), the numerical scheme is given by:

h
(n+1)
i = h

(n)
i −∆th

u
(n)
i+1/2 − u

(n)
i−1/2

∆x
(4.71)

u
(n+1)
i+1/2 = u

(n)
i+1/2 −∆tg

h
(n+1)
i+1 − h

(n+1)
i

∆x
(4.72)

where i the spatial index, n is the temporal index, ∆x is the grid spacing and ∆t is the time step.
Stability analysis is provided in appendix E.

Alternative exercise, solve:
∂T

∂t
= c

∂2T

∂x2

T
(n+1)
i = T

(n)
i + c∆t

T
(n)
i+1 − 2T

(n)
i + T

(n)
i−1

∆x2
(4.73)

(4.74)

for T (x) = a exp(−(x/b)2) for the same parameters and domain as before and c = 0.1 m2/s. Try to
find the largest time step, that still give stable results.

Arakawa (1966) introduced several ways to place the variables of the primitive equations on a two
dimensional grids (figure 4.2.2. The variables u and v corresponds to the horizontal velocity and tracer
flux components. T are the tracers (temperature, salinity, turbulent kinetic energy, concentration of
biological and chemical tracers) and sea surface height. variable ϕ represent the location of barotropic
stream function.

Most common grids are B and C. Numerous authors have compared the merit of the different grid
under different conditions:

• in B grid, the Coriolis force can be easily represented while the C grid requires spatial averaging
for this term. Geostrophy is thus well represented on a B grid.

• at coarse resolution inertia-gravity waves are better represented on a B than a C grid, at fine
resolution the C grid is better than the B grid (Arakawa and Lamb, 1977; Hsieh et al., 1983;
Beckers and Deleersnijder, 1993).

• B grid is better for Rossby-waves (resolved and under-resolved) because of their superior represen-
tation of the Coriolis force (Dukowicz, 1995).

• C grid has a better representation of the Energy cascade with baroclinic eddies (Janjić, 1984).

4.2.3 Unstructured mesh

Most ocean models use currently structured grids. However, recently numerical ocean model using
unstructured grids are developed. With unstructured meshes the smallest resolved scale varies in general
of the model domain.

Advantages:

• very flexible to represent complex coastline and other isobaths

• increased resolution in zones of interest

• finite volume or finite elements

Disadvantages:

• Difficulty to represent the geostrophic balance correctly

• Unphysical wave scattering when the resolution changes abruptly

39

A B C

D E
u
v
T


Figure 4.14: Location of variables in staggered Arakawa A, B, C, D and E grid.

Figure 4.15: Example of an unstructured mesh. Image from Applied Mechanics Division at UCL.

40

Exercise 10:

Consider the linear shallow water equation in a 1d-domain bounded by two coastal walls.

∂η

∂t
= −∂U

∂x
(4.75)

∂U

∂t
= −gh∂η

∂x
(4.76)

Between 0 and L1 the domain is discretized with a resolution ∆x = 1 km and between L1 and L2

with a coarser resolution of r∆x. The initial surface elevation is given by:

η(x) = A exp
(
−x2/L2

)
(4.77)

where h = 500 m, L1 = 200 km, L2 = 400 km, ∆t = 10 s and A = 1 m. The velocity is initially
zero. Integrate the equation forward until the (main) perturbation reached x = 300 km. At this
moment integrate the wave energy over the first half of the domain:

E(t) =

∫ L1

0

gη(x, t)2 +
U(x, t)2

h
dx (4.78)

• Carry out the experiment for different value for r = 2, 3 and 5 and L = 4 km, 10 km and
20 km.

• Describe what happen at x = L1 and why.

• Explain the dependence of E on r and L.

4.3 Time stepping

Time stepping is the temporal equivalent of the spatial coordinates and grid staggering. The primitive
equations admit a range of wave-like solution with a broad spectrum of possible propagation speed. For
example surface gravity waves have a propagation speed of

√
gH (about 100 m/s for 1000 m deep ocean)

and Rossby waves (c = −β/k2) These waves are produced in barotropic, baroclinic, and thermodynamic
adjustment processes and the time-scale of these processes is related to the corresponding wave propa-
gation speed. Each of those wave like solution introduce a stability criterion which is increasingly severe
for faster waves. To reduce computational cost, a different time steps for various equations is often used
(Bryan, 1969b,a). The barotropic variables (surface elevation and depth averaged current), the baroclinic
velocity and the tracer can thus be integrated with different time steps.

41

0 10 20 30 40 50 60 70 80 90 100

x (km)

-100

-80

-60

-40

-20

0

20

Figure 4.16: Snapshot of the simulation

Exercise 11:

Discretize the linear two-layer model on a staggered grid with a wall at x = 0 and x = L.

∂hk
∂t

= −∂hkuk
∂x

(4.79)

∂uk
∂t

= − 1

ρk

∂pk
∂x

(4.80)

for k = 1 and k = 2 and where the pressure for each level is given by:

p1 = ρ1g(h1 + h2 −H) (4.81)

p2 = ρ1(gh1 + (g + g′)(h2 −H)) (4.82)

where H = h1 + h2 and g′ = ρ2−ρ1

ρ1
g. Initially the velocity is zero and h1 and h2 are given by:

h1 = A1 exp(−x2/L′2) + h1 (4.83)

h2 = A2 exp(−x2/L′2) + h2 (4.84)

where A1 = 40 m, A2 = −30 m, L = 100 km, L′ = 20 km, ρ1 = 1020 kgm−3, ρ2 = 1035 kgm−3,
and h1 = h2 = 50 m.
Hint: Use the pressure at time step n+ 1 to compute the velocity at this time step.

• Draw h2 as a function of time and space and describe it

• Determine graphically the propagation speeds and compare it to the theoretical values

• Repeat the simulation with ρ1 = 1000 kgm−3, and ρ1 = 1035 kgm−3 and explain the changes
relative to the first simulation in physical terms.

The dynamics of a stratified fluid can be decomposed vertically in orthogonal eigenmodes (Gill, 1982).

42

0 10 20 30 40 50 60 70 80 90 100

space (km)

0

0.2

0.4

0.6

0.8

1

1.2

ti
m

e
 (

d
)

20

25

30

35

40

45

50

Figure 4.17: Hovmöller Diagram of h2 showing the propagation of the external and internal waves

The first mode is called the barotropic mode and all higher modes are called baroclinic modes. In practice
the barotropic mode is obtained by depth averaging.

The barotropic mode contains the fast moving surface gravity waves and the slow moving planetary
and topographic Rossby waves (or the geostrophic equilibrium for a flow ocean with constant f). The
fast moving surface gravity waves can handled in different ways:

• Explicit free surface models: Barotropic shallow water equations are solved with a small time step
(according to the CFL condition for the surface gravity waves)

• The surface gravity waves are removed by the altogether with the rigid lid approximation. However,
this means that:

• need to solve an elliptic problem for the stream function ϕ or surface pressure. Direct solution
of the elliptic problem is only feasible for smaller problem.s For an iterative elliptic solver, it
is difficult to achieve convergence in a reasonable number of iteration.

• Not possible to add/remove water (due to river or precipitation/evaporation). Freshwater flux
is treated as a virtual salinity flux.

• rigid lit approximation modifies also the dispersion relation of Rossby waves

• no tides

The rigid lid method is becoming obsolete even for ocean climate modeling (Griffies et al., 2000).

• Implicit free surface models: implicit methods admit large time-step, but not resolving the barotropic
dynamics. Still need to solve an elliptic problem.

Only local boundary conditions are needed for explicit free surface models while implicit and rigid
lid approaches require non-local boundary conditions. The free surface is more easier to implement for
σ and isopycnal models than for z-models, since the model cells in a z-grid might be partially empty.
Also free surface models are more efficient on a parallel computer.

43

Chapter 5

Solving model equations on a grid

Contents
5.1 Finite difference . 44

5.2 Finite volume . 45

5.3 Finite elements . 46

5.4 Spectral methods . 48

The purpose of this chapter is to review main methods to discretize a partial differential equations
to resolve it numerically. The methods are illustrated with the 1D advection equations:

∂u

∂t
+ c

∂u

∂x
= 0 (5.1)

All discretization method take only into account a certain range of scales. Larger scale should be
taken into account as boundary conditions and smaller scales have to be parameterized.

5.1 Finite difference

The continuous function is function u is sampled at discrete locations (xj , tn) = (∆xj,∆tn) where j and
n are integers. The derivative of the partial differential equations are approximated by finite differences:

un+1
j − unj

∆t
+ c

unj+1 − unj−1

2∆x
= 0 (5.2)

The dipsersion relation of this numerical scheme is determined by assuming a wave-like solution:

unj = A exp(i(k∆xj − ω∆tn)) (5.3)

which leads to:

exp(−iω∆t) + i
c∆t

∆x
sin(k∆x) = 0 (5.4)

The dispersion relation is thus,

ω = tan−1(C sin(k∆x)) +
i

2
ln
(
1 + C2 sin2(k∆x)

)
(5.5)

where C = c∆t
∆x . The angular frequency has an imaginary part which is always larger than 1. The

scheme is thus unconditionally unstable. In general, there is no guarantee that a partial differential
equation solved by the finite difference approach is stable. The only way to find out is by applying a
stability analysis.

44

In equations (5.2), the spatial derivative was treated differently that the temporal derivative. The
leap-frog scheme discretizes both derivative in a symmetric way.

un+1
j − un−1

j

2∆t
+ c

unj−1 − unj−1

2∆x
= 0 (5.6)

It can be shown that this scheme is conditionally stable if C < 1. However, this scheme suffers from
other issues:

• it requires two initial condition at two successive time steps

• it requires an unphysical downstream boundary condition

• it admits a spurious numerical mode as solution

Exercise 12:

An additional relaxation term if often included in numerical models to avoid unrealistic drifts due
to e.g. systematic error in the heat flux. This term “nudges” the model towards a reference state
such as a climatology or observations. Study the evolution equations of temperature where only
this relaxation is term present:

∂T

∂t
=

1

τ
(T e − T) (5.7)

where τ = 1 month and T (0) = 10°C.

• For T e = 20°C. Solve this equations analytically and numercially using an Euler-forward
scheme. Integrate this equations for 3 years with a suitably chosen time step.

• For T e = A+B cos(ωt) where A = 20°C, B = 5°C and the period of the cosine is one year.
Solve this equation numerically and discuss the phase difference between T and T e.

• Can you think of others processes (possibly in other fields) which are similar to the nudging
terms?

Exercise 13:

Using the sea-surface height in NetCDF file ssh 20071127.nc compute the corresponding surface
geostrophic current by finite difference.

5.2 Finite volume

The partial differential equation is written in flux form:

∂u

∂t
+
∂q

∂x
= 0 (5.8)

q = cu (5.9)

The partial differential equations are integrated over a finite volume:∫ (j+1/2)∆x

(j−1/2)∆x

∂u

∂t
+
∂q

∂x
dx = 0 (5.10)

∆x
∂uj
∂t

+ qj+1/2 − qj−1/2 = 0 (5.11)

45

where uj represents the average over the grid cell and qj+1/2 is the flux at the interface:

uj =
1

∆x

∫ (j+1/2)∆x

(j−1/2)∆x

udx (5.12)

qj+1/2 = q((j + 1/2)∆x) (5.13)

For the upwind-scheme, the flux is given by:

qj+1/2 = cuj if c ≥ 0 (5.14)

= cuj−1 if c < 0 (5.15)

The time derivative can be discetized by using an Euler forward step:

un+1
j = unj +

∆t

∆x
(qj+1/2 − qj−1/2) (5.16)

This numerical scheme could also be obtained by the finite difference approach. For simple partial
differential equations, it is common that the finite difference approach and the finite volume approach
yield the same numerical scheme, but for more complex partial differential equations this is in general
not the case.

This method does not required that the finite volumes are rectangular. Indeed, some numerical ocean
models apply the finite volume approach to unstructured triangular meshes.

5.3 Finite elements

The solution is projected into a series of (non-orthogonal) functions which are only non-zero over a given
element

u∗ =

N∑
i=0

ui(t)ϕi(x) (5.17)

The basis function ϕi are defined by:

ϕi =
1

h
(x− (i− 1)h) (i− 1)h ≤ x ≤ ih (5.18)

=
1

h
((i+ 1)h− x) ih ≤ x ≤ (i+ 1)h (5.19)

= 0 otherwise (5.20)

where i = 1, . . . , N .

46

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Figure 5.1: The shape of function ϕi for i = 1 and h = 1

In general, there are no coefficients ui(t) such that the function u∗ satisfies equations (5.1) exactly.
There will be a residual, noted r.

∂u∗

∂t
+ c

∂u∗

∂x
= r (5.21)

However, we want that the residual should be “as small as possible”. The coefficients ui(t) are
determined such that the residual is orthogonal to a set of test functions:∫

rwidx = 0 for i = 1, . . . , N (5.22)

For the Galerkin method, the basis function themselves are chosen as test functions: ϕi = wi. For
the 1d-advection case, it follows that:

N∑
j=1

duj
dt

∫
ϕiϕjdx+ uj

∫
ϕi
dϕj
dx

dx = 0 (5.23)

After evaluating the integrals, one obtains:

1

6

dui−1

dt
+

2

3

dui
dt

+
1

6

dui+1

dt
= − c

2h
(ui+1 − ui−1) (5.24)

Semi-discrete equation since the time derivative is not jet discretized. This equation is implicit. For
the finite element method in general a large but sparse system must be solved.

For the present 1d-advection case, a tri-diagonal system for which efficient solver exists such as the
Thomas algorithm.

uj = A exp(i(jkh− ωt)) (5.25)

Dispersion relation:

ω =
3

2 + cos(hk)

sin(kh)

h
(5.26)

is a approximation of the true dispersion relation to the fourth order in h.

47

5.4 Spectral methods

As previously, the solution is projected into a series of function.

u∗ =

N∑
j=0

uj(t)ϕj(x) (5.27)

But now, the basis function are chosen orthogonal.The choice of the orthogonal function is often
determined by the geometry of domain. For the 1d-advection problem, we choose Fourier modes:

ϕj = exp(ikjx) (5.28)

By substitution, u∗ in the 1d-advection equation, one obtains:

∂u

∂t
+ c

∂u

∂x
= (5.29)

N∑
j=0

duj
dt

ϕj + ickjujϕj = 0 (5.30)

Since the basis function ϕj are orthogonal,

duj
dt

+ ickjuj = 0 (5.31)

Spectral method has thus transformed the partial differential equations (5.1) into a set of trivial and
decoupled ordinary differential equations. The dispersion relation for the semi-discrete equation obtained
by the spectral method is thus identical to the dispersion relation of the continuous equations.

The spectral method is often used for global atmospheric circulation model where sperical harmonics
are used as basis functions. However, it is difficult to apply the spectral method to the ocean because of
the complex geometry of the domain.

48

Chapter 6

Sub-grid scale processes

Contents
6.1 Surface mixed layer . 49

6.2 Bottom boundary layer . 49

6.3 Horizontal sub-grid scale process . 49

6.1 Surface mixed layer

Bulk mixed layer, assumes a perfectly mixed layer. All variables are perfectly uniform over this layer. No
vertical structure is a problem where this layer extends to over hundred meters (e.g. subpolar regions).

Continuously formulated surface mixed layer:

• K-Profile Parameterization (KPP) (Large et al., 1994): diffusibility is based on the Richardson
number, includes non-local mixing processes

• Mellor-Yamada (Mellor and Yamada, 1982)

• k-ϵ. Additional equations for turbulent kinetic energy and turbulence dissipation or length-scale

z and s -coordinate allow a good representation of the surface mixed layer. For hystrotatic models,
the turbulence scheme must handle also if hydrostaticaly unstable, then large diffusibility to parameterize
convection (since hydrostatic approximation)

6.2 Bottom boundary layer

σ coordinate allow a good representation of the bottom boundary layer since the flow is constrained by
the bottom topography.

Width of several tens of meters depending on the roughness for the sea floor and the strength of the
currents

Overflow are currents following the bottom topography. Their water is in general much denser than
the surrounding waters. Overflows are problematic in z-coordinates since topography is approximated
by steps.

6.3 Horizontal sub-grid scale process

While several parametrization exists for the vertical sub-grid scale processes, only a few and simple
parametrizations are used for the horizontal sub-grid scale processes. The simplest form is the horizontal
diffusion:

D(c) =
∂

∂x

(
A
∂c

∂x

)
+

∂

∂y

(
A
∂c

∂y

)
(6.1)

49

where A is either constant or depends on the characteristics of the flow (e.g Smagorinsky, 1963).
Most numerical ocean model require a horizontal diffusion to dissipate energy at small grid scale.

Exercise 14: Refraction of surface gravity waves

As in optics, the refraction of ocean surface gravity waves obeys the Snell-Descartes law. The
phase velocity of the surface gravity waves is a function of depth. The refraction of surface gravity
waves is applied to the propagation of a tsunami in the Pacific Ocean. The bottom topography is
approximated by a series of contours: each contours represents a discontinuity of the bottom depth
and between two successive contours, the depth is assumed constant. The starting point of the
tsunami wave is 38.297°N, 142.372°E and 16 initial propagation directions (or more) spanning
the full circle are used. For each initial direction, the path and the time when the tsunami reaches
the shoreline of the Pacific Ocean are modeled. Results will be discussed and compared to the
NOAA tsunami simulation.

Exercise 15: Lagrangian surface drift

A 100 surface drifters are released in the Pacific Ocean. The position of each of those drifters
can be modeled by using the surface velocity v which is a function of the position x and time t.

dx(t)

dt
= v(x, t) (6.2)

Initially the drifters are located on a regular 10 × 10 grid with a grid spacing of 1 km. The
student can choose the precise positioning of this grid and the starting time. It is advised to use
the 4th order Runge–Kutta discretization scheme. For the surface velocity fields, the student can
either use the results of the global HYCOM model (http: // hycom. org/ dataserver/ , http: //
hycom. org/ dataserver/ glb-analysis/ expt-90pt9) or other model results. The simulation
is stopped after 60 days. Results will be discussed in connection with the general circulation.

50

http://hycom.org/dataserver/
http://hycom.org/dataserver/glb-analysis/expt-90pt9
http://hycom.org/dataserver/glb-analysis/expt-90pt9

Chapter 7

Programming aspects

Contents
7.1 Programming languages . 51

7.2 Elements of a programming language . 51

7.2.1 Elementary types . 51

7.2.2 Arrays and structures . 52

7.2.3 Statements and commands . 52

7.2.4 Subroutines and functions . 53

7.3 General structure of an ocean model . 54

7.1 Programming languages

There are two general approaches to implement programming languages:

• Interpretation: An interpreter takes the program in some language, and performs the actions
written in that language on some machine.

• Compilation: A compiler translates the a program into some other language, which is in general
machine code that a computer can execute directly.

Fortran, C and C++ are examples of languages which are compiled to machine code. Interpreted
languages are for example Octave/Matlab, Python and Shell scripts. Compiled languages require the
declaration of types of a variables. It is thus easier to develop programs written in Interpreted languages.
However, programs written in compiled languages are generally faster than programs in interpreted
languages. Most ocean models are written in Fortran. But interpreted languages are often used for
preparing the models fields and post-processing the results.

7.2 Elements of a programming language

7.2.1 Elementary types

Fortran Matlab/Octave
boolean (true or false) logical logical
integer (whole number) integer(1), integer(2), inte-

ger(4), integer(8)
int8, int16, int32, int64

unsigned integer (positive
whole number)

not available uint8, uint16, uint32, uint64

real (real number) real(4), real(8) single, double
characters and string character(length) char
variable declaration real(4) :: variable not needed

51

7.2.2 Arrays and structures

Fortran Matlab/Octave
arrays (collection of variables of
the same type accessed by an
index)

real (4) : : array (10 ,20) array = zeros (10 ,20)

structure (collection of vari-
ables of the different type ac-
cessed by their name)

! d e f i n i t i o n o f type
type type name
! f i e l d s , e . g . :

real (4) : : f i e ldname
end type [type name]

! d e c l a r a t i on o f
! v a r i ab l e
type (type name) : : s

! a c c e s s
s%f ie ldname

% de f i n i t o n
s . f i e ldname = value ;

% acc e s s
s . f i e ldname

cell arrays (collection of vari-
ables of the different types ac-
cessed by an index)

not available

array {1} = value1 ;
array {2} = value2 ;

7.2.3 Statements and commands

Fortran Matlab/Octave
conditions

i f (cond i t i on) then
! do t h i s i f c ond i t i on
! i s t rue
else
! o the rw i se t h i s
end i f

i f cond i t i on
% do t h i s i f c ond i t i on
% i s t rue
else
% otherwi se t h i s
end

loops using an iterator

do i=imin , imax , s tep
! do something
end do

for i=imin : s tep : imax
% do something
end

loops with stop conditions

while (cond i t i on) do
! do something whi l e
! c ond i t i on i s t rue
end do

while cond i t i on
% do something whi l e
% cond i t i on i s t rue
end

terminate loop prematurely

exit break

52

7.2.4 Subroutines and functions

Fortran Matlab/Octave
main program

program main
! do some th ing
end program main

Commands can be regrouped in
a file (script). The script can be
called using the file name (with-
out the extension “.m”)

subroutine (block of code)

subroutine sub (param1 ,
param2)

! do some th ing
end subroutine sub

! c a l l a subrout ine
ca l l fun (p1 , p2)

see functions

function (block of code with re-
turn value)

A function can have only a sin-
gle return value

real function fun (param)
! do some th ing

fun = . . .
end function fun

! c a l l a func t i on
r = fun (p)

A function can have multiple
return values and it must be
saved in a file with the same
name (plus extension “.m”)

function [r] = fun (p)
% do some th ing

r = . . .
end

% c a l l a func t i on
r = fun (p)

parameters of function and sub-
routines

Type of parameters have to be
declared after the subroutine
or function statement. Param-
eters are passed by reference
(i.e. modifications will also af-
fect the corresponding parame-
ter from the calling level).

real function fun (param)
integer : : param

! do some th ing
end function fun

Type of parameters are not de-
clared. Parameters are passed
by value (i.e. modifications will
not affect the corresponding pa-
rameter from the calling level).

53

Exercise 16:

Programming exercise:

• 1D-diffusion equation (for i = 1, ..., N)

c
(n+1)
i = c

(n)
i +

∆t

∆x
(Fi+1 − Fi) (7.1)

Fi =
κ

∆x
(c

(n)
i − c

(n)
i−1) (7.2)

with closed and periodic boundary conditions. Initially all values of c are zero except one
(at the center or near the boundary).

• 2D-diffusion equation. Generalize previous equations to 2D and implement it.

7.3 General structure of an ocean model

Solve dynamical equations for next time step

Apply boundary conditions

Save the model output every n time steps

Read or compute forcing fields (surface fluxes,
open boundary conditions, ...)

Initialization of variables and grid

Figure 7.1: Different parts of a numerical ocean model

54

Recommendations for assignment

• Proposed structure:

• start with abstract and introduction

• finish with the discussion of the result and the conclusions

• Try to interpret the results and its overall significance in a wider context

• Send your work as PDF file per email and include also your source code as a separate file in the
attachment. There is no need to embed your source code in the PDF document.

• Avoid common issues with figures:

• all axes should have labels

• figures should have legends if multiple lines are present.

• use descriptive titles especially if a figure contains multiple sub-plots

• labels and titles should be as large as the text font-size

• do not forget the units

55

Appendix A

Calculus reminder

A.1 Divergence theorem

• Also known as Gauss’s theorem or Ostrogradsky’s theorem

• For any continuously differentiable vector field F defined over the volume V∫
V

(∇ · F) dV =

∫
S

(F · n) dS (A.1)

where S is the surface bounding the volume V and n a unit vector pointing outward.

A.2 Stream function

• Assume that the depth integrated flow, is non-divergent:

∂U

∂x
+
∂V

∂y
= 0 (A.2)

• One can show that a function ϕ exists which satisfies

U = −∂ϕ
∂y

(A.3)

V =
∂ϕ

∂x
(A.4)

(A.5)

• Note: the sign convention can be different

• The flow dQ trough an infinitesimal section is given by:

dQ = Udy − V dx (A.6)

= −∂ϕ
∂y
dy − ∂ϕ

∂x
dx (A.7)

= −dϕ (A.8)

56

-V dx

U dy

(x,y)

(x+dx,y+dy)

dQ

Figure A.1: Flow across an infinitesimal section

• The flow Q crossing two A and B can be computed as:∫ B

A

U · n ds =
∫ B

A

dQ = ϕ(A)− ϕ(B) (A.9)

where U = (U, V)

• The integrated flow does not depend on the particular path.

P1

P2

A

B

Figure A.2: Flow across two different paths

• Question: what would happen if the flow between the two paths P1 and P2 are not equal?

57

Figure A.3: Global stream function (Sv) derived from the MOM2 model (Zika et al., 2012)

58

Appendix B

Transformation of coordinates

In order to solve a partial differential equations analytically, we are free to chose the coordinate sys-
tem which suites best the geometry of the problem. Also for numerical problems, such transformations
are interesting since it may help the discretizations of the model domains (for example a discretization
which follows the bottom topography) or it may reduce discretization error when the coordinate sys-
tem is chosen such to follow variations of a given property (for example density in isopycnal coordinates).

Change of the coordinates (x1, x2, . . . , xn) to the new coordinate systems (x′1, x
′
2, . . . , x

′
n)

x1 = x1(x
′
1, x

′
2, . . . , x

′
n) (B.1)

x2 = x2(x
′
1, x

′
2, . . . , x

′
n) (B.2)

...

xn = xn(x
′
1, x

′
2, . . . , x

′
n) (B.3)

This transformations is assumed to be invertible. The coordinates (x′1, x
′
2, . . . , x

′
n) can also be ex-

pressed in terms of (x1, x2, . . . , xn):

x′1 = x′1(x1, x2, . . . , xn) (B.4)

x′2 = x′2(x1, x2, . . . , xn) (B.5)

...

x′n = x′n(x1, x2, . . . , xn) (B.6)

Any function f of the old coordinate (x1, x2, . . . , xn) can be transformed into the new coordinate
systems by substituting (x1, x2, . . . , xn):

f(x1, x2, . . . , xn) = f(x1(x
′
1, x

′
2, . . . , x

′
n), . . . , xn(x

′
1, x

′
2, . . . , x

′
n)) (B.7)

∂

∂x′i
f(x1(x

′
1, x

′
2, . . . , x

′
n), . . . , xn(x

′
1, x

′
2, . . . , x

′
n)) =

∂xj
∂x′i

∂

∂xj
f(x1, x2, . . . , xn) (B.8)

or in matrix form 
∂

∂x′
1

∂
∂x′

2

...
∂

∂x′
n

 =


∂x1

∂x′
1

∂x2

∂x′
1

. . . ∂xn

∂x′
1

∂x1

∂x′
2

∂x2

∂x′
2

. . . ∂xn

∂x′
2

...
...

. . .
...

∂x1

∂x′
n

∂x2

∂x′
n

. . . ∂xn

∂x′
n




∂
∂x1
∂

∂x2

...
∂

∂xn

 (B.9)

The matrix in the previous equations is also written as:

59

M =


∂x1

∂x′
1

∂x2

∂x′
1

. . . ∂xn

∂x′
1

∂x1

∂x′
2

∂x2

∂x′
2

. . . ∂xn

∂x′
2

...
...

. . .
...

∂x1

∂x′
n

∂x2

∂x′
n

. . . ∂xn

∂x′
n

 (B.10)

To transform a partial differential equations, we need to expressed derivatives in (x1, x2, . . . , xn) in
derivatives in (x′1, x

′
2, . . . , x

′
n): 

∂
∂x1
∂

∂x2

...
∂

∂xn

 = M−1


∂

∂x′
1

∂
∂x′

2

...
∂

∂x′
n

 (B.11)

The determinant of the matrix M is called the Jacobian J . At some locations, the Jacobian may be
zero and the inverse does not exists. For example, the Jacobian is zero at the origin of polar coordinate
system.

If the transformations is given in the form of equations (B.4) - (B.6), the derivative in the new
coordinate system can be obtained directly by:


∂

∂x1
∂

∂x2

...
∂

∂xn

 =


∂x′

1

∂x1

∂x′
2

∂x1
. . .

∂x′
n

∂x1
∂x′

1

∂x2

∂x′
2

∂x2
. . .

∂x′
n

∂x2

...
...

. . .
...

∂x′
1

∂xn

∂x′
2

∂xn
. . .

∂x′
n

∂xn




∂
∂x′

1
∂

∂x′
2

...
∂

∂x′
n

 (B.12)

An infinitesimal increment dxj is transformed according to the following rule:

dxj =
∂xj
∂x′i

dx′i (B.13)

This can be expressed in matrix form as:
dx1
dx2
...

dxn

 = MT


dx′1
dx′2
...

dx′n

 (B.14)

Note that here the infinitesimal increments are transformed by the multiplication of the matrix MT

whereas the derivative are transformed by M−1.

For vector fields, a new set of basis vector (e′1, . . . , e
′
n) need to be introduced. The vector e′i is

proportional to the direction the variable x′i and all other variables are constant.

hie
′
i =

∂

∂x′i
(xjej) (B.15)

=
∂xj
∂x′i

ej (B.16)

The proportionality constant hi is determined by requiring that the norm of e′i is 1.

hi =

√√√√ n∑
j=1

(
∂xj
∂x′i

)2

(B.17)

The components of a vector field v are obtained by projecting this vector on the basis vectors:

60

vjej = v′ie
′
i (B.18)

vj = e′i · ejv′i (B.19)

=
∂xj
∂x′i

v′i
hi

(B.20)


v1
v2
...
vn

 = MT


v′1/h1
v′2/h2

...
v′n/hn

 (B.21)

B.1 Example

Polar coordinates:

x = r cos(θ) (B.22)

y = r sin(θ) (B.23)

M =

(
∂x
∂r

∂y
∂r

∂x
∂θ

∂y
∂θ

)
=

(
cos(θ) sin(θ)

−r sin(θ) r cos(θ)

)
(B.24)

Jacobian

J = r cos2(θ) + r sin2(θ) = r (B.25)

The inverse matrix

M−1 =

(
cos(θ) − 1

r sin(θ)
sin(θ) 1

r cos(θ)

)
(B.26)

∂

∂x
= cos(θ)

∂

∂r
− 1

r
sin(θ)

∂

∂θ
(B.27)

∂

∂y
= sin(θ)

∂

∂r
+

1

r
cos(θ)

∂

∂θ
(B.28)

61

Appendix C

Volume conservation in transformed
coordinates

The derivatives in original coordinates (x, y, z, t) and transformed coordinates (x′, y′, z′, t′) of a given
function f are related by:

∂f

∂x
=

∂f

∂x′
+
∂f

∂z′
∂z′

∂x
(C.1)

∂f

∂y
=

∂f

∂y′
+
∂f

∂z′
∂z′

∂y
(C.2)

∂f

∂z
=

∂f

∂z′
∂z′

∂z
(C.3)

∂f

∂t
=

∂f

∂t′
+
∂f

∂z′
∂z′

∂t
(C.4)

In particular for f = z, one obtains:

∂z

∂x′
= −J ∂z

′

∂x
(C.5)

∂z

∂y′
= −J ∂z

′

∂y
(C.6)

1 = J
∂z′

∂z
(C.7)

∂z

∂t′
= −J ∂z

′

∂t
(C.8)

where J is the Jacobian of this transformation defined by

J =
∂z

∂z′
. (C.9)

The volume conservations is given by:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (C.10)

In equation (C.10), we use the transformations (C.1) - (C.3):

∂u

∂x′
+
∂u

∂z′
∂z′

∂x
+
∂v

∂y′
+
∂v

∂z′
∂z′

∂y
+
∂w

∂z′
∂z′

∂z
= 0 (C.11)

Every term is multiplied by J and using equation (C.7):

J
∂u

∂x′
+ J

∂z′

∂x

∂u

∂z′
+ J

∂v

∂y′
+ J

∂z′

∂y

∂v

∂z′
+
∂w

∂z′
= 0 (C.12)

62

Equations (C.5) and (C.6) allow to rewrite the 2nd and 4th terms as

J
∂u

∂x′
− ∂z

∂x′
∂u

∂z′
+ J

∂v

∂y′
− ∂z

∂y′
∂v

∂z′
+
∂w

∂z′
= 0. (C.13)

The terms in blue can also be written as:

∂z

∂x′
∂u

∂z′
=

∂

∂z′

(
∂z

∂x′
u

)
− ∂J

∂x′
u (C.14)

∂z

∂y′
∂v

∂z′
=

∂

∂z′

(
∂z

∂y′
v

)
− ∂J

∂y′
v (C.15)

Expressions (C.14) and (C.15) are substituted in equation (C.13):

J
∂u

∂x′
+
∂J

∂x′
u+ J

∂v

∂y′
+
∂J

∂y′
v +

∂w

∂z′
− ∂

∂z′

(
u
∂z

∂x′

)
− ∂

∂z′

(
v
∂z

∂y′

)
= 0 (C.16)

We isolate the derivatives relatives to z′:

∂Ju

∂x′
+
∂Jv

∂y′
+

∂

∂z′

(
w − u

∂z

∂x′
− v

∂z

∂y′

)
= 0 (C.17)

This is already quite nice and compact, but we can do better using again equations (C.5) - (C.8):

∂Ju

∂x′
+
∂Jv

∂y′
+

∂

∂z′

(
w + Ju

∂z′

∂x
+ Jv

∂z′

∂y
+ J

∂z′

∂t
+
∂z

∂t′

)
= 0 (C.18)

∂Ju

∂x′
+
∂Jv

∂y′
+

∂

∂z′

(
J

(
1

J
w + u

∂z′

∂x
+ v

∂z′

∂y
+
∂z′

∂t

))
+

∂

∂t′
∂z

∂z′
= 0 (C.19)

The expression inside the innermost brackets leads to the definition of ω (also using equation (C.7)):

ω =
∂z′

∂t
+ u

∂z′

∂x
+ v

∂z′

∂y
+ w

∂z′

∂z
(C.20)

ω corresponds to the vertical velocity relative to the transformed coordinate system.
Finally, the volume conservation expressed in the transformed coordinate system is given by:

∂J

∂t′
+
∂Ju

∂x′
+
∂Jv

∂y′
+
∂Jω

∂z′
= 0 (C.21)

63

Appendix D

Measures of humidity

The water vapor content of the air is important to compute the latent heat flux between the air and
the ocean. It also intervenes in the long-wave radiation due to the greenhouse effect. Unfortunately,
several ways exist to express the humidity (absolute humidity, relative humidity, specific humidity, partial
pressure of water vapor, mixing ratio, dew point temperature, ...). Due to this proliferation of humidity
measures, it might be necessary to convert the humidity measure provided by the atmospheric model to
the humidity measure need by the ocean model.

D.1 Definitions

Absolute humidity : The absolute humidity ρv is the mass of water vapour per volume of wet air.

Density of dry air : The density of dry air ρd is mass of air per volume of wet air.

Density of wet air : The density of wet air ρ is mass of air and water per volume of wet air.

All are related by:

ρ = ρv + ρd (D.1)

Specific humidity : qs

qs =
ρv
ρ

=
ρv

ρv + ρd
(D.2)

Mixing ratio qv: the mass of water vapor divided by the mass of dry air

qv =
ρv
ρd

=
ρv

ρ− ρv
(D.3)

Dew point temperature Td: The dew point is the temperature at which a given parcel of humid air
must be cooled, at constant barometric pressure, for water vapor to condense into water.

D.2 Mixing ratio and specific humidity

Mixing ratio and specific humidity are directly related by:

qs =
ρv

ρv + ρd
=

qv
1 + qv

(D.4)

and

qv =
ρv

ρ− ρv
=

qs
1− qs

(D.5)

64

D.3 The ideal gas law

For a mixture of ideal gases, the partial pressure of any component can be found from the ideal gas law
applied to that component only. The ideal gas law is applied to water vapor and dry air”

e = ρvRvT (D.6)

pd = ρdRdT (D.7)

where T is temperature, e is water vapour pressure and pd is pressure of dry air. Rv and Rd are the
specific gas constant for water vapor (462 J/(kg K)) and dry air respectively (287 J/(kg K)).

The total air pressure p is the sum of these partial pressures:

p = e+ pd (D.8)

For most application, only the ratio of these constants are important:

ϵ =
Rd

Rv
= 0.62198 (D.9)

D.4 Water vapour saturation pressure

Water vapour saturation pressure es is the maximum partial pressure that water vapor molecules would
exert if the air were saturated with vapor at a given temperature and pressure.

Several empirical formulas exists for the water vapor saturation pressure. Over liquid water, the
Teten formula approximates es(T, p):

es(T, p) = 611.21 (1.0007 + 3.46 10−8P) exp

(
17.502T

240.97 + T

)
(D.10)

where P and es are Pascal and T in degree Celsius.

D.5 Relative humidity

The relative humidity is defined by:

rh =
e

es
(D.11)

It is often expressed in %. From the ideal gas law, it follows that:

rh =
ρv
ρs

(D.12)

where ρs is the density of water vapour in saturated air.

ρs =
es
RvT

(D.13)

D.6 From water vapour pressure to specific humidity

To convert the from one humidity measure to another, it is convenient to use the water vapor pressure.
As an example, we derive the equation liking specific humidity and vapour pressure.

65

qs =
ρv

ρv + ρd
(D.14)

=
e

RvT
e

RvT
+ pd

RdT

(D.15)

=
ϵe

ϵe+ pd
(D.16)

=
ϵe

ϵe+ p− e
(D.17)

=
ϵe

p+ (ϵ− 1)e
(D.18)

Since in general p >> e, the following approximation is often used:

qs ∼ ϵe

p
(D.19)

66

Appendix E

Example of a stability analysis

Stability analysis of the linear shallow water equation in a 1d-domain:

∂η

∂t
= −∂U

∂x
(E.1)

∂U

∂t
= −gh∂η

∂x
(E.2)

A simple foreward Euler scheme on a staggered grid yields:

η
(n+1)
i = η

(n)
i − ∆t

∆x

(
U

(n)
i+1/2 − U

(n)
i−1/2

)
(E.3)

U
(n+1)
i+1/2 = U

(n)
i+1/2 − gh

∆t

∆x

(
η
(n)
i+1 − η

(n)
i

)
(E.4)

We look for a solution of the following structure (why this is not a loss of generality?):

η
(n)
i = Anej ik∆x (E.5)

U
(n)
i = Bnej ik∆x (E.6)

where j2 = 1

An+1 = An − ∆t

∆x

(
Bnej k∆x/2 −Bne−j k∆x/2

)
(E.7)

Bn+1 = Bn − gh∆t

∆x

(
Anej k∆x/2 −Ane−j k∆x/2

)
(E.8)

Remeber the definition of the sinus function:

sin(x) =
ejx − e−jx

2j

An+1 = An − 2j sin

(
k∆x

2

)
∆t

∆x
Bn (E.9)

Bn+1 = Bn − 2j sin

(
k∆x

2

)
gh∆t

∆x
An (E.10)

α = sin
(
k∆x
2

)
∆t
∆x and c =

√
gh

An+1 = An − 2jαBn (E.11)

Bn+1 = Bn − 2jc2αAn (E.12)

67

(
An+1

Bn+1

)
=

(
1 −2jα

−2jαc2 1

)(
An

Bn

)
Eigenvalues ∣∣∣∣ 1− λ −2jα

−2jαc2 1− λ

∣∣∣∣ = 0

(1− λ)2 = −4αc2

λ1,2 = 1± 2j
√
αc2 → |λ1,2| > 1

always unstable
There is a better way:

An+1 = An − 2jαBn (E.13)

Bn+1 = Bn − 2jc2αAn+1 = (1− 4c2α2)Bn − 2jc2αAn (E.14)

(
An+1

Bn+1

)
=

(
1 −2jα

−2jαc2 1− 4c2α2

)(
An

Bn

)
Eigenvalues ∣∣∣∣ 1− λ −2jα

−2jαc2 1− 4c2α2 − λ

∣∣∣∣ = 0

(1− λ)(1− 4c2α2 − λ)2 = −4αc2 (E.15)

λ2 − (2− 4c2α2)λ+ 1− 4c2α2 = −4αc2 (E.16)

λ2 − (2− 4c2α2)λ+ 1 = 0 (E.17)

λ1,2 = 1− 2c2α2 ±
√
(1− 2c2α2)2 − 1 (E.18)

= 1− 2c2α2 ±
√
4c4α4 − 4c2α2 (E.19)

= 1− 2c2α2 ± 2cα
√
c2α2 − 1 (E.20)

if α < 1/c

|λ1,2|2 = (1− 2c2α2)2 + 4c2α2(1− c2α2) (E.21)

= 1−4c2α2 + 4c4α4 + 4c2α2 − 4c4α4 (E.22)

= 1 (E.23)

stable
if α > 1/c (αc > 1)

λ2 = 1− 2c2α2 − 2cα
√
c2α2 − 1 < 1− 2c2α2 < −1 (E.24)

unstable
Follow-up: verify results numerically

68

Appendix F

NetCDF

NetCDF is a machine-independent file format for scientific data sets. Most numerical models save their
output as NetCDF files either directly or as a post-processing step. The file format allows to describe
the saved data, for example it allows to specify units and the meaning of the dimensions of the variables.
The NetCDF library is available at www.unidata.ucar.edu/software/netcdf/.

F.1 Fortran 90

F.1.1 Reading NetCDF files

!

! Read data to a netcdf file

!

!

! Compile with something like:

!

! gfortran -o read_netcdf read_netcdf.f90 -I.../netcdf/include -L.../netcdf/lib -lnetcdff -lnetcdf

!

! or

! gfortran -o read_netcdf read_netcdf.f90 $(nc-config --fflags --flibs)

!

! Execute:

!

! ./read_netcdf

!

program read_netcdf

use netcdf

implicit none

integer :: ncid, status, dimids(2), varid

integer :: i,j

real :: temp(6,4), valid_range(2)

character(64) :: units

! open netcdf file example.nc in read-only

status = nf90_open(’example.nc’,nf90_nowrite,ncid)

call check_error(status)

! find the identifier for the variable ’temp’

69

www.unidata.ucar.edu/software/netcdf/

status = nf90_inq_varid(ncid, ’temp’, varid)

call check_error(status)

! retrieve the netcdf variable temp

! the variable temp must have the same size than in the NetCDF file

status = nf90_get_var(ncid, varid, temp)

call check_error(status)

! retrieve the attribute units of variable temp

status = nf90_get_att(ncid, varid, ’units’, units)

call check_error(status)

! retrieve the attribute valid_range of variable temp

status = nf90_get_att(ncid, varid, ’valid_range’, valid_range)

call check_error(status)

! close file

status = nf90_close(ncid)

call check_error(status)

write(6,*) ’Units: ’,units

write(6,*) ’Valid_range: ’,valid_range

write(6,*) ’Temp: ’

do j=1,4

write(6,*) (temp(i,j),i=1,6)

end do

contains

subroutine check_error(status)

integer, intent (in) :: status

if(status /= nf90_noerr) then

write(6,*) ’NetCDF error: ’,trim(nf90_strerror(status))

stop "Stopped"

end if

end subroutine check_error

end program read_netcdf

F.1.2 Writing NetCDF files

!

! Write data to a netcdf file

!

!

! Compile with something like:

!

! gfortran -o write_netcdf write_netcdf.f90 -I.../netcdf/include -L.../netcdf/lib -lnetcdff -lnetcdf

!

70

! or

!

! gfortran -o write_netcdf write_netcdf.f90 $(nc-config --fflags --flibs)

!

! Execute:

!

! ./write_netcdf

!

program write_netcdf

use netcdf

implicit none

integer :: ncid, status, dimids(2), varid

integer :: i,j

real :: temp(6,4)

! create some data

do j=1,4

do i=1,6

temp(i,j) = i+j

end do

end do

! create netcdf file called example.nc

! nf90_clobber: overwrite if exists

status = nf90_create(’example.nc’,nf90_clobber,ncid)

call check_error(status)

! define the dimension longitude and latitude of

! appropriate size

status = nf90_def_dim(ncid, ’longitude’, 6, dimids(1))

call check_error(status)

status = nf90_def_dim(ncid, ’latitude’, 4, dimids(2))

call check_error(status)

! create a variable temp of type float of the size 6x4

! (dimension longitude and latitude).

status = nf90_def_var(ncid, ’temp’, nf90_float, dimids, varid)

call check_error(status)

! define a string as attribute of the variable

status = nf90_put_att(ncid, varid, ’units’, ’degree Celsius’)

call check_error(status)

! define a vector of floats as attribute of the variable

status = nf90_put_att(ncid, varid, ’valid_range’, (/-10.,40./))

call check_error(status)

71

! end definitions: leave define mode

status = nf90_enddef(ncid)

call check_error(status)

! store the variable temp in the netcdf file

status = nf90_put_var(ncid,varid,temp)

call check_error(status)

! close netcdf file and all changes are written to disk

status = nf90_close(ncid)

call check_error(status)

write(6,*) ’example.nc file created. You might now inspect this file’

write(6,*) ’with the shell command "ncdump example.nc"’

contains

subroutine check_error(status)

implicit none

integer, intent (in) :: status

if(status /= nf90_noerr) then

write(6,*) ’NetCDF error: ’,trim(nf90_strerror(status))

stop "Stopped"

end if

end subroutine check_error

end program write_netcdf

F.2 Matlab and Octave

Matlab R2012 or newer has support for NetCDF. For Octave you need to install the package “netcdf”
from http://octave.sourceforge.net/netcdf/.

F.2.1 Reading NetCDF files

% Example for reading a netcdf file

% in Matlab and Octave

% the name of the netcdf file

filename = ’example.nc’;

% retrieve the netcdf variable temp

temp = ncread(filename,’temp’);

% retrieve the attribute units of variable temp

temp_units = ncreadatt(filename,’temp’,’units’);

% retrieve the attribute valid_range of variable temp

temp_valid_range = ncreadatt(filename,’temp’,’valid_range’);

% retrieve the global attribute history

72

http://octave.sourceforge.net/netcdf/

global_history = ncreadatt(filename,’/’,’history’);

F.2.2 Writing NetCDF files

% Example for creating a netcdf file

% in Matlab and Octave

% create some variables to store them in a netcdf file

latitude = -90:1:90;

longitude = -179:1:180;

[y,x] = meshgrid(pi/180 * latitude,pi/180 * longitude);

temp = cos(2*x) .* cos(y);

%---------------------------------------%

% %

% write data to a netcdf file %

% %

%---------------------------------------%

filename = ’example.nc’;

delete(filename);

% coordinate variable longitude

% create a variable longitude of type double with

% 360 elements (dimension longitude).

nccreate(filename,’longitude’,’Dimensions’,{’longitude’,size(temp,1)},’Format’,’classic’);

ncwriteatt(filename,’longitude’,’standard_name’,’longitude’);

% define a string attribute of the variable longitude

ncwriteatt(filename,’longitude’,’units’,’degree_east’);

% coordinate variable latitude

nccreate(filename,’latitude’,’Dimensions’,{’latitude’,size(temp,2)});

ncwriteatt(filename,’latitude’,’standard_name’,’latitude’);

ncwriteatt(filename,’latitude’,’units’,’degree_north’);

% define variable temp

% create a variable temp of type double of the size 360x181

% (dimension longitude and latitude).

nccreate(filename,’temp’,’Dimensions’,{’longitude’,’latitude’});

ncwriteatt(filename,’temp’,’standard_name’,’northward_sea_water_velocity’);

ncwriteatt(filename,’temp’,’units’,’m s-1’);

ncwriteatt(filename,’temp’,’valid_range’,[-10 40]);

ncwriteatt(filename,’/’,’history’,’netcdf file created by write_netcdf.m’);

% store the octave variables longitude, latitude

% and temp in the netcdf file

ncwrite(filename,’longitude’,longitude);

73

ncwrite(filename,’latitude’,latitude);

ncwrite(filename,’temp’,temp);

disp([’example.nc file created. You might now inspect this file"’]);

disp([’with the shell command "ncdump -h example.nc"’]);

74

Bibliography

Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height
coordinate ocean model. Monthly Weather Review , 125, 2293–2315.

Arakawa, A., 1966: Computational design for long-term numerical integration of the equation of fluid
motion: two-dimensional incompressible flow. Part I. Journal of Computational Physics, 1, 119–143.

Arakawa, A. and V. Lamb, 1977: Computational design of the basic dynamical process of the UCLA
general circulation model . Methods in Computational Physics, Academic Press, New York, 173–265.

— 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Monthly
Weather Review , 109, 18–36.

Barth, A., A. Alvera-Azcárate, M. Rixen, and J.-M. Beckers, 2005: Two-way nested model
of mesoscale circulation features in the Ligurian Sea. Progress In Oceanography , 66, 171–189,
doi:10.1016/j.pocean.2004.07.017.
URL http://hdl.handle.net/2268/4301

Barth, A., A. Alvera-Azcárate, and R. H. Weisberg, 2008: A nested model study of the Loop Current
generated variability and its impact on the West Florida Shelf. Journal of Geophysical Research, 113,
C05009, doi:10.1029/2007JC004492.
URL http://hdl.handle.net/2268/26199

Beckers, J.-M., 1991: Application of a 3D model to the Western Mediterranean. Journal of Marine
Systems, 1, 315–332.

Beckers, J.-M. and E. Deleersnijder, 1993: Stability of a FBTCS scheme applied to the propagation of
shallow-water inertia-gravity waves on various space grids. Journal of Computational Physics, 108,
95–104.

Blayo, E. and L. Debreu, 2005: Revisiting open boundary conditions from the point of view of charac-
teristic variables. Ocean Modelling , 9, 231–252.

Bryan, K., 1969a: Climate and the ocean circulation. III. The ocean model. Monthly Weather Review ,
97, 806–827.

— 1969b: A numerical model for the study of the circulation of the world oceans. Journal of Computa-
tional Physics, 4, 347–376.

Castellari, S., N. Pinardi, and K. Leaman, 1998: A model study of air-sea interactions in the Mediter-
ranean Sea. Journal of Marine Systems, 18, 89–114.

Chapman, D., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean
model. Journal of Physical Oceanography , 15, 1060–1075.

Chassignet, E., H. Arango, D. Dietrich, T. Ezer, M. Ghil, D. Haidvogel, C.-C. Ma, A. Mehra, A. Paiva,
and Z. Sirkes, 2000: DAMEE-NAB: The base experiments. Dynamics of Atmospheres and Oceans, 32,
155–184.

Chassignet, E. and P. Malanotte-Rizzoli, eds., 2000: Dynamics of Atmospheres and Oceans (special
issue), Elsevier Science, Amsterdam, volume 32, chapter Ocean Circulation Model Evaluation Exper-
iments for the North Atlantic Basin. 155–432.

75

http://hdl.handle.net/2268/4301
http://hdl.handle.net/2268/26199

Daniel, P., 2004: Oil slick drift prediction and operational oceanography systems. OCEAN OPS 04
workshop, Toulouse, France.

Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the
North Pacific Ocean. Journal of Physical Oceanography , 6, 249–266.

Deleersnijder, E. and J.-M. Beckers, 1992: On the use of the σ-coordinate system in regions of large
bathymetric variations. Journal of Marine Systems, 3, 381–390.

Dukowicz, J., 1995: Mesh effects for Rossby waves. Journal of Computational Physics, 119, 188–194.

Flather, R., 1976: A tidal model of the northwest European continental shelf. Mémoires de la Societe
Royale des Sciences de Liège, 6, 141–164.

Gill, A. E., 1982: Atmosphere-Ocean Dynamics, volume 30 of International Geophysics Series. Academic
Press.

Griffies, S., C. Boning, F. Bryan, E. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A.-M. Treguier, and
D. Webb, 2000: Developments in ocean climate modelling. Ocean Modelling , 2, 123–192.

Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordiante ocean
models. Journal of Physical Oceanography , 21, 610–619.

Hsieh, W. W., M. Davey, and R. Wajsowicz, 1983: The free Kelvin wave in Finite-difference numerical
models. Journal of Physical Oceanography , 13, 1383–1397.

Janjić, Z., 1984: Non-linear advection schemes and energy cascade on semi-staggered grids. Monthly
Weather Review , 112, 1234–1245.

Jerlov, N. G., 1968: Optical oceanography . Elsevier Publishing Co., New York, 194 pp.

Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Boundary–Layer Meteoroplogy ,
91–112.

Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: a review and a model with a
nonlocal boundary layer parameterization. Reviews of Geophysics, 32, 363–403.

McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO and an integrating concept in Earth
Science. Science, 314, 1710–1715.

Mellor, G. and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid
problems. Reviews of Geophysics and Space Physics, 20, 851–875.

Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21,
251–269.

Robert, C. M., 2008: Chapter two generalities: Geodynamics of the ocean. Global Sedimentology of
the Ocean: An Interplay between Geodynamics and Paleoenvironment , C. M. Robert, ed., Elsevier,
volume 3 of Developments in Marine Geology , 23 – 87.

Rosati, A. and K. Miyakoda, 1988: A general circulation model for upper ocean simulation. Journal of
Physical Oceanography , 18, 1601–1626.

Shchepetkin, A. and J. McWilliams, 2003: A Method for Computing Horizontal Pressure-Gradient Force
in an Oceanic Model with a Non-Aligned Vertical Coordinate. Journal of Geophysical Research, 108,
1–34, doi:10.1029/2001JC001047.

— 2005: The Regional Oceanic Modeling System: A split-explicit, free-surface, topography-following-
coordinate ocean model. Ocean Modelling , 9, 347–404, doi:10.1016/j.ocemod.2004.08.002.

Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic ex-
periment. Mon. Wea. Rev., 91, 99–164.

76

Song, Y. T. and D. Haidvogel, 1994: A Semi-implicit ocean circullation model using a generalized
topography following coordinate system. Journal of Computational Physics, 115, 228–244.

Zika, J. D., M. H. England, and W. P. Sijp, 2012: The Ocean Circulation in Thermohaline Coordinates.
Journal of Physical Oceanography , 42, 708–724, doi:10.1175/JPO-D-11-0139.1.

77

	Introduction
	Equations for hydrodynamic flow
	Navier-Stokes equations
	Non-hydrostatic primitive equations
	Primitive equations
	Shallow water equations
	Quasi-Geostrophic dynamics

	Boundary conditions
	Surface boundary conditions
	The momentum flux
	Heat flux

	Bottom boundary conditions
	Lateral boundary condition
	Coast line
	Open-ocean boundary conditions

	Model grids
	Vertical coordinate
	General coordinate transformation
	z-coordinate
	-coordinate
	Isopycnals

	Horizontal grid
	Structured mesh
	Grid staggering
	Unstructured mesh

	Time stepping

	Solving model equations on a grid
	Finite difference
	Finite volume
	Finite elements
	Spectral methods

	Sub-grid scale processes
	Surface mixed layer
	Bottom boundary layer
	Horizontal sub-grid scale process

	Programming aspects
	Programming languages
	Elements of a programming language
	Elementary types
	Arrays and structures
	Statements and commands
	Subroutines and functions

	General structure of an ocean model

	Calculus reminder
	Divergence theorem
	Stream function

	Transformation of coordinates
	Example

	Volume conservation in transformed coordinates
	Measures of humidity
	Definitions
	Mixing ratio and specific humidity
	The ideal gas law
	Water vapour saturation pressure
	Relative humidity
	From water vapour pressure to specific humidity

	Example of a stability analysis
	NetCDF
	Fortran 90
	Reading NetCDF files
	Writing NetCDF files

	Matlab and Octave
	Reading NetCDF files
	Writing NetCDF files

	References

