
Ocean Assimilation Kit (OAK)
User guide

Alexander Barth, Luc Vandenbulcke

February 24, 2016

1 Structure of the software

The software is structured in different modules

• ufileformat: Binary output and input of large 1D, 2D or 3D matrices in the
GHER or NetCDF.

• initfile: Input of integers, floating numbers, strings and small vectors of those
data types.

• matoper: Basic matrix operating: multiplication, matrix inversion, eigenvalue/eigenvectors
and singular value decomposition (relying on BLAS and LAPACK).

• date: module for conversion between modified Julian day number and Gregorian
date.

• grids: interpolation from one grid to another of 1D, 2D or 3D data.

• rrsqrt: The analysis equation

• assimilation: I/O of state vector, observations, error space and observation op-
erator. Analysis routine with input/output and computation of diagnostics.

These modules can be either used for specific task with standalone programs 6 or by a
hydrodynamic model in the case of a simulation assimilating observations. The GHER
hydrodynamic model drives the data assimilation modules trough the following subrou-
tines:

• dainit: initialises of the data assimilation modules

• daobs: loads of the next observation to assimilate

• daanalysis: performs the analysis

• damoderr: propagates the error covariance of the model

1

2 Module: ufileformat

This module is used for binary output and input of large 1D, 2D or 3D matrices. The
GHER and a subset of the NetCDF format is currently supported. The matrix can contain
exclusion points (“holes”). Matrices A where the elements are a linear combination of
the indices can also be efficiently represented:

A(i, j, k) = a0 + a1i + a2j + a3k (1)

Only the coefficient a0, a1, a2 and a3 are stored. These file are called degenerated. For
example, the longitude and latitude of each grid point can often be expressed in this way.

For the GHER format, each file represent a real matrix. If the file names ends with .gz,
then the file is uncompressed (with gunzip) in the user’s temporary directory defined
by the environment variable $TMPDIR (or by default in /tmp). Simple Fortran 90-style
extraction can also by performed with the module ufileformat. A coma separated list
of indices or ranges of indices in parenthesis can be appended to the file name, if only a
subsection of the matrix should be loaded.
For example if the file toto.TEM is a 10 x 10 x 10 matrix, the “file”:

toto.TEM(:,:,6) is 10x10x1 matrix containing all elements with the 3rd indices equal
to 6.

toto.TEM(:,end,:) is 10x1x10 matrix containing all elements with the 2nd indices equal
to 10.

toto.TEM(1:,:end,1:end) is 10x10x10 matrix equal to the original matrix

But no arithmetic with the indices (for example toto.TEM(:,end-1,:)) are allowed. If
data extraction is used with degenerated matrices, the four coefficient are changed ac-
cordingly to the subsection chosen.

Data extraction and automatic decompression can only be used for loading data.

A variable in a NetCDF file can be loaded by specifying a “file name” of the following
form:

NetCDF_filename#NetCDF_variable

If the NetCDF file name end with .gz, then the file is uncompressed as with the GHER
file format. The data extraction follows also the same rules as above. For example, the
following is a valid file name for loading a matrix.

file.nc.gz#temp(:,:,1)

The file file.nc.gz is first decompressed, then the slice with the 3rd indices equal to 1
of the variable temp is returned to the calling program.

The special value for missing data is stored in the variables attribute missing data. In
the case of degenerated file, the attribute shape must be present, containing the shape
of the matrix. The actual value of the variable contains the coefficients ai.

2

2.1 Order of the dimensions

The reported order of the dimensions depends on the tool that you are using to query
and access a file. Two types of ordering schemes exists:

column-major order : used by Fortran programs such as OAK

row-major order : used by C programs such as ncdump

The order of the dimensions for NetCDF follows the recommendation of the CF-convention.
If you query your NetCDF files with ncdump, the order of the dimensions should be time,
depth, latitude, longitude. For a Fortran program reading this file the dimensions with
automatically be longitude, latitude, depth and time since Fortran uses the column-major
order (as opposed to ncdump). For Fortran binary files, the order of the dimensions is
also longitude, latitude, depth and time.

3 The initialisation file

With the module initfile a program can read an integer number, floating number or
a character string from an initialisation file. Each line in this file is composed by a name
(called key), an equal sign and the value. For example:

runtype = 2

Geoflow.maxU = 0.3

logfile = ’assim.log’

When the program search for example the key “runtype”, it gets the integer 2. If a key
is present several times in the same initialisation file, then the last value found is taken.

The key can be composed by any alphanumeric character and by periods (.). In par-
ticular, spaces and a equal signs are not allowed within the key name. The wild cards
symbols *, ? and brackets ([,]), are allowed but have a special meaning (see Paragraph
below).

Vectors of integers, floats and character strings are also supported. The values are sepa-
rated with commas and enclosed in brackets.

Model.variables = [’ETA’,’TEM’,’SAL’]

Model.maxCorrection = [0.3,3.,2.,0.3,3.,2.,0.3,3.,2.]

Blank lines are ignored and comments begin with the pound sign (#). It is recommended
to document the meaning and the possible values by a comments directly in the initiali-
sation file.

Entries in this files cannot be split across different lines. Before assigning a value to a
key you should know with type is expected: scalar or vector and number or characters.
If the type does not correspond, the program will be stopped.

Sometimes a sequence of keys are attributed to the same values:

3

http://en.wikipedia.org/wiki/Row-major_order
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/cf-conventions.html#dimensions

Obs001.path = ’/u/abarth/soft/Ligur3/Obs/’

Obs002.path = ’/u/abarth/soft/Ligur3/Obs/’

Obs003.path = ’/u/abarth/soft/Ligur3/Obs/’

In this case one can use wild cards and write the following:

Obs*.path = ’/u/abarth/soft/Ligur3/Obs/’

The meaning of the wild cards are the same as for file name generation of the Burne Shell
(see also man page of sh and gmatch).

4 Assimilation module

4.1 Reduced order analysis

Let N be the ensemble size, n the size of the state vector and m the observation space di-
mension. The best linear unbiased estimator (BLUE) of the model’s state vector given the
model forecast xf with error covariance Pf and the observation yo with error covariance
R is given by xa:

xa = xf + K
(
yo −Hxf

)
(2)

K = PfHT
(
HPfHT + R

)−1
(3)

Pa = Pf −KHPf (4)

where H is the observation operator extracting the observed part of the state vector and
Pa the error covariance of the analysis xa.

From the ensemble of forecast states xf (k) where k = 1, . . . , N one can compute the
ensemble mean

xf =
1

N

N∑
k=1

xf (k)

(5)

and ensemble covariance:

Pf =
1

N − 1

N∑
k=1

(
xf (k) − xf

)(
xf (k) − xf

)T
(6)

We construct the columns of the matrix Sf by:

(
Sf
)
k

=
xf (k) − xf

√
N − 1

(7)

where Sf is a n×N matrix, which each column being the difference between each member
its ensemble mean. Its mean over all columns it thus zero. As many other assimilation
schemes (SEEK, RRSQRT, ESSE, EnKF), Pf is decomposed in terms of this square root
matrix Sf :

Pf = SfSf T (8)

4

Typically, the number of ensemble members N is much smaller than the state vector size
n. We rewrite the Kalman Filter analysis, by avoiding any matrix of the size n× n:

K = (SfSf T)HT
[
H(SfSf T)HT + R

]−1
(9)

= Sf (HSf)T
[
HSf (HSf)T + R

]−1
(10)

= Sf
[
I + (HSf)TR−1HSf

]−1
(HSf)TR−1 (11)

Where the Sherman-Morison-Woodbury identity has been applied from (10) to (11). This
identity can be expressed as:

ABT
(
C + BABT

)−1
=
(
A−1 + BTC−1B

)−1
BTC−1 (12)

with A = I, B = HSf , C = R. That is, instead of performing the inverse in space of
matrix A the inverse is done in the space of the matrix C. We also substitute Pf in the
expression of the analysis covariance error Pa:

Pa = Pf −KHPf (13)

= SfSf T −KHSfSf T (14)

= SfSf T − Sf
[
I + (HSf)TR−1HSf

]−1
(HSf)TR−1HSSf T (15)

= Sf
[
I−

(
I + (HSf)TR−1HSf

)−1
(HSf)TR−1HS

]
Sf T (16)

In order to avoid to form Pa explicitly, we need to express Pa also in terms of the square
root matrices Sa.

Pa = SaSaT (17)

This is possible when the following eigenvalue decomposition is made :(
HSf

)T
R−1HSf = UΛUT (18)

where UTU = I and where Λ is diagonal. U and Λ are both of the size N ×N .

Using the decomposition (18) in equation (16) one obtains:

Pa = Sf
[
I− (I + UΛUT)−1UΛUT

]
Sf T (19)

= Sf
[
I− (I + UΛUT)−1

(
UΛUT + I− I

)]
Sf T (20)

= Sf
[
I− (I + UΛUT)−1

(
UΛUT + I

)
+ (I + UΛUT)−1

]
Sf T (21)

= Sf
[
I− I + (I + UΛUT)−1

]
Sf T (22)

= Sf (I + UΛUT)−1Sf T (23)

= Sf (UUT + UΛUT)−1Sf T (24)

= SfU(I + Λ)−1UTSf T (25)

= SfU(I + Λ)−1/2(I + Λ)−1/2UTSf T (26)

5

So we found a square root decomposition of Pa in terms of SfU(I + Λ)−1/2. But in order
to construct an ensemble from the columns of Sa, its mean has to be zero. So we will
transform Sa so that the identity (26) is preserved. One way to do this is

Sa = SfU(I + Λ)−1/2UT (27)

The decomposition (18) can also be used in the computation of the Kalman gain K: by:

K = Sf
[
I + (HSf)TR−1HSf

]−1
(HSf)TR−1 (28)

= Sf
[
UUT + UΛUT

]−1
(HSf)TR−1 (29)

= SfU(I + Λ)−1UT (HSf)TR−1 (30)

For a linear observation operator, the sum of all columns of HSf is zero. Thus 1N×1 is a

(unnormalized) eigenvector of
(
HSf

)T
R−1HSf with eigenvalue 0:(

HSf
)T

R−1HSf1N×1 = 0 1N×1 (31)

If eigenvalues are sorted in Λ, then 1N×1 is the smallest and last eigenvalue (as all
eigenvalues positive).

UeN =
1√
N

1N×1 (32)

UT 1√
N

1N×1 = eN (33)

where eN is the a vector with all elements equal to zero expect that last which is one.
Therefore, it follows that

U(I + Λ)−1/2UT1N×1 = 1N×1 (34)

since the element ΛN,N is zero. Thus the mean of all columns of Sa is zero.
Sa is the square root of Pa:

Pa = SaSaT (35)

Based on xa and Sa, an ensemble can be reconstructed:

xa(k) = xa +
√
N − 1 Sa(k) (36)

The bias aware analysis scheme of Dee and Silva (1998) is also implemented. But the
error space Sa is not computed.

4.2 Configuration

The initialisation file of the assimilation module is composed mainly by four sections:
configuration of the model (model state vector, position of the individual variables,
error space of the model), observations to assimilate (observations, their position, their
error), eventual diagnostics of the analysis and miscellaneous flags.

6

4.2.1 The model

The following code contains the definition of the multivariate state vector. The key
Model.variables is a vector of character strings attributing to each variable a user
chosen name. The keys Model.gridX, Model.gridY, Model.gridZ and Model.mask are
vectors of file names. The files in Model.gridX and Model.gridY are degenerated and
give the longitude and latitude of each variable. The files in Model.gridZ can be plain
files and contains the depth. The key Model.mask is used to determine the sea-land
mask of each variable. The exclusion value (or missing value or FillValue in NetCDF
terminology) marks a land point all other values, a sea points. Every files assembled into
a state vector should have physical values where mask assumes a sea point. The shape
of the arrays in Model.gridX, Model.gridY, Model.gridZ and Model.mask must be the
same.

The string in Model.path in prepended to each file names. Example:

Model.variables = [’ETA’ ,’TEM’ ,’SAL’]

Model.gridX = [’ligur.X(:,:,end)’,’ligur.X’,’ligur.X’]

Model.gridY = [’ligur.Y(:,:,end)’,’ligur.Y’,’ligur.Y’]

Model.gridZ = [’ligur.Z(:,:,end)’,’ligur.Z’,’ligur.Z’]

Model.mask = [’ligur.Z(:,:,end)’,’ligur.Z’,’ligur.Z’]

Model.path = ’/u/abarth/soft/Ligur3/Data/’

For nested grids the variables of the same nested must be grouped and the groups must
be orders according to the resolution started with the highest resolution one. To each
model grid is associated a Model.gridnum: one for the highest resolution one, two of the
next highest resolution one and so one.

Model.variables = [’TEM’ ,’SAL’ ,’TEM’, ’SAL’]

Model.gridX = [’ligur.X’,’ligur.X’,’med.X’,’med.X’]

Model.gridY = [’ligur.Y’,’ligur.Y’,’med.Y’,’med.Y’]

Model.gridZ = [’ligur.Z’,’ligur.Z’,’med.Z’,’med.Z’]

Model.mask = [’ligur.Z’,’ligur.Z’,’med.Z’,’med.Z’]

Model.gridnum = [1, 1, 2, 2]

Model.path = ’/u/abarth/soft/Ligur3/Data/’

Mandatory keys

7

Key Type Description

ErrorSpace.dimension integer The dimension of the error space.
ErrorSpace.init vector of strings Each string is a Fortran format containing an

integer descriptor. The format is converted
into a file name with an internal write. The
integer is a number ranging from 1 to the di-
mension of the error space n. n vectors of file
names are formed and represent a error mode
in the state space. Their norm represent the
importance of the error mode and thus they
are in general not normed. Orthogonality is
not necessary.

Optional keys

Key Type Description

ErrorSpace.path string The path is prepended to all file names spec-
ified in ErrorSpace.*. The current path is
used by default.

ErrorSpace.scale real Each error mode is multiplied by this real
number. The default is 1.

ErrorSpace.spaceScale vector of strings Each error mode is multiplied element by el-
ement by this vector. The default is a vector
with all elements equal to 1.

4.2.2 Zones

When the local version of the assimilation algorithm (schemetype = 1) is used, then
the assimilation is performed in a number of zones independently. Zones are defined by
specifying a partition vector which has the same number of variables as the model state
vector and each variable has the same size as the corresponding Model.mask. This vector
contains only integer values starting with one and represent labels: all elements in the
state vector which have the same partition number belong to the same zone. For example,
for a state vector with 5 elements and the partition vector p:

x =


x1

x2

x3

x4

x5

 p =


1
1
2
2
3

 (37)

This partition vector defined three zones: the first zone contains elements x1 and x2, the
second zone x3 and x4 and the third zone x3. There should be no gaps in the partition
vector. For example the vector (1, 1, 2, 2, 4)T would cause an error. In practice, the state
vector is partitioned along water columns. The assimilation is performed independently
in each zone using only observations within the search radius given by Zones.maxLength.

8

The weight of the observations 1
R′

is multiplied by a Gaussian function:

1

R′
=

1

R′
exp(−(d/L)2) (38)

where d is the horizontal distance (in m) the first point of a zone and a single observa-
tion and L a length-scale (in m) given by Zones.corrLength. Zones.maxLength and
Zones.corrLength have the same size as the model state vector. In most cases these
values are constant can be specified by, e.g.:

Zones.corrLength.const = [30e3, 30e3]

Zones.maxLength.const = [2000e3, 2000e3]

Key Type Description

Zones.partition vector of strings Each string is a file name containing the par-
tition file for the given model variable

Zones.corrLength vector of strings Each string is a file name containing the cor-
relation length

Zones.maxLength vector of strings Each string is a file name containing the
maximum correlation length

4.2.3 The observations

All set of simultaneous observation are ordered chronically and are attributed to a time
index starting with 001 (written always with three digits). In the following keys “XXX”
have to be replaced by the time index.

Mandatory keys

Key Type Description

ObsXXX.time ’yyyy-mm-
ddTHH:MM:ss’

yyyy=year (minimum 1 digit integer)
mm=month (2 digits integer) dd=day (2
digits integer) HH=hour (2 digits integer)
MM=min (2 dig-ids integer) SS=second
(minimum 1 digit integer or real)

ObsXXX.value vector of strings Each string is a file name containing the ac-
tual values of the observations

ObsXXX.rmse vector of strings Each string is a file name containing the root
mean square error of the observations.

ObsXXX.mask vector of strings Each string is a file name containing the bi-
nary mask of the observations. Values where
the mask is different from 1 are rejected.

Optional keys

9

Key Type Description

ObsXXX.variables vector of strings The names must correspond to the names
chosen in Model.variables. Unknown names
are treated as ”out of the grid” and are not
assimilated.

ObsXXX.names vector of strings Each string is a description of the data type
of the observations. You can choose any
name meaningful to you. These names are
only used for the log-file. The default names
are Var01, Var02,...

ObsXXX.gridX vector of strings Each string is a file name containing the lon-
gitude of the observations.

ObsXXX.gridY vector of strings Each string is a file name containing the lat-
itude of the observations.

ObsXXX.gridZ vector of strings Each string is a file name containing the
depth of the observations.

ObsXXX.HperObs vector of strings The observation operator stored in a sparse
matrix form per observations

ObsXXX.operator string The observation operator stored in a sparse
matrix form.

ObsXXX.path string The path is prepended to all file names spec-
ified in ObsXXX.*. The current path is used
by default.

The optional keys are used to create the observation operator. If it is applied to the state
vector, it extracts the observed variables at the location of the measurements. Several
ways exist to specify the observation operator.

1. ObsXXX.operator: the observation operator is directly given by the non zero ele-
ments. See also 4.2.3.

2. ObsXXX.variables and ObsXXX.HperObs: the non zero elements of the observation
operator for each variable are given separately. The first column in 9× x matrix is
ignored. See also 4.2.3.

3. ObsXXX.variables, ObsXXX.gridX, ObsXXX.gridY and ObsXXX.gridZ: the obser-
vation operator is created by a trilinear interpolation using the module grids.

Note that the individual arrays in ObsXXX.value, ObsXXX.rmse, ObsXXX.mask, ObsXXX.gridX,
ObsXXX.gridY and ObsXXX.gridZ should have the same size.

Format of the observation operator

Only the non-zero elements of the observation operator are specified in the 9× n matrix
(in column-major order) where n is the number of non-zero elements. Each column has
the following structure:

10

Observations Model

var. in-
dex

i-index j-index k-index var. in-
dex

i-index j-index k-index Inter-
polation
coeffi-
cient

The first integer value is related to the observation. The index of the variable is the
position where the observed variable appears in ObsXXX.value and i,j,k-index are the
three spatial indexes of a single scalar observation.

The integers in column 5 to 8 are related to the model state vector. Again the index
of the variable is the position where the observed variable appears in Model.variables

and i,j,k-index are the three spatial indexes of a single scalar model forecast. If one of
the model indexes is -1 the corresponding observation is treated ”out of grid” and the
associated weight will be zero.
The column 9 is a real value between 0 and 1 in the case of a simple trilinear interpolation.
The observation operator can be generated offline using a trilinear interpolation with the
tool ”genobsoper”.

4.2.4 Diagnostics

All diagnostics are optional and the corresponding files are output.

11

Key Type Description

DiagXXX.xf vector of strings the model forecast (ensemble mean)
DiagXXX.Hxf vector of strings the observed part of the model forecast
DiagXXX.Sf vector of strings Each string is a Fortran format. For

the conversion into file names see the key
ErrorSpace.init. The files represent the
error modes of the model forecast.

DiagXXX.Ef vector of strings Each string is a Fortran format. For
the conversion into file names see the key
ErrorSpace.init. The files represent the
forecast ensemble.

DiagXXX.diagPf vector of strings The diagonal elements of error covariance of
the model forecast.

DiagXXX.diagHPfHT vector of strings The diagonal elements of error covariance of
the observed part of the model forecast

DiagXXX.stddevxf vector of strings Standard deviation of the error of the model
forecast.

DiagXXX.stddevHxf vector of strings Standard deviation of the error of the ob-
served part of the model forecast.

DiagXXX.path string The path is prepended to all file names spec-
ified in DiagXXX.*. The current path is used
by default.

DiagXXX.xa vector of strings the analysis (ensemble mean)
DiagXXX.Hxa vector of strings the observed part of the analysis
DiagXXX.Sa vector of strings Each string is a Fortran format. For

the conversion into filenames see the key
ErrorSpace.init. The files represent the
error modes of the analysis.

DiagXXX.Ea vector of strings Each string is a Fortran format. For
the conversion into file names see the key
ErrorSpace.init. The files represent the
analysis ensemble.

DiagXXX.diagPa vector string The diagonal elements of error covariance of
the analysis.

DiagXXX.diagHPaHT vector of strings The diagonal elements of error covariance of
the observed part of the analysis

DiagXXX.stddevxa vector of strings Standard deviation of the error of the anal-
ysis.

DiagXXX.stddevHxa vector of strings Standard deviation of the error of the ob-
served part of the analysis.

DiagXXX.H strings the observation operator
DiagXXX.yo vector of strings The observations.
DiagXXX.invsqrtR vector of strings The inverse of the root mean square error

of the observations. If a scalar observation
point has been eliminated (out of the model
grid for example) its weight is zero.

DiagXXX.xa-xf vector of strings The analysis increment
DiagXXX.yo-Hxf vector of strings the observation minus the model forecast at

the observation points
DiagXXX.yo-Hxa vector of strings the observation minus the model analysis at

the observation points
DiagXXX.Hxa-Hxf vector of strings analysis increment at the observation points
DiagXXX.path string The path is prepended to all filenames spec-

ified in DiagXXX.*. The current path is used
by default.

12

4.2.5 miscellaneous flags

Key Type Description

nbnest integer Number of nested grids
assimnum integer Number between 1 and nbnest different for

each model. The model with assimnum does
the assimilation

runtype integer possible values of runtype are:

0: do nothing, i.e. a pure run of the model

1: still do not assimilate, but compare model
to observations

2: assimilate observations

schemetype integer possible values of schemetype are:

0: global assimilation (default)

1: local assimilation (Zones need to be de-
fined)

moderrtype integer possible values of moderrtype are:

0: optimal interpolation Pf constant

1: forgetting factor approximation

biastype integer possible values of biastype are:

0: standard bias-blind analysis

1: A fraction of the error (gamma) is a sys-
tematic error and the rest (1-gamma)
is random (Dee and Silva, 1998)

Bias.gamma real fraction of the error with is systematic
Bias.init vector of string the initial estimation of the bias
joinvectors integer If joinvectors is 1 then the variables of the

nested grids will be assembled to one multi-
grid state vector

logfile string File contains simple diagnostics such as rmse
with observations

debugfile string File contains debugging information is the
code was compiled with the flag -DDEBUG

13

5 Data structures

The subroutine assim requires as an argument a part of the model state for local assimi-
lation. The way the data is distributed can be explained by the following steps:

1. for each variable concatenate the model sub-domains (if the model domain is de-
composed into sub-domains)

2. concatenate all variables

3. remove masked elements

4. permute the order of the elements so that all elements belong to the same zone
are continuous in memory. The elements are “sorted” using numeric labels in the
partition vector (the sort is stable, i.e. if two elements have the same partition
label, their order is not changed).

5. each vector is distributed among the available processes

The actual implements avoid to form a global vector spanning the entire state vector and
goes directly from the first step to the last.

6 Standalone programs

6.1 Program assim

The standalone program assim can be used to test the assimilation. The program can
be called from the command line:

assim <initfile> <time index>

The first argument is the initialisation file and the second argument is the time index of
the observation to assimilate. All keys described in 4.2 have the same meaning for the
program assim. But the forecast has to be specified by the following keys.
Key Type Description

ForecastXXX.value vector of strings the forecast
ForecastXXX.path string The path is prepended to all filenames spec-

ified in ForecastXXX.value. The current
path is used by default.

If the program is called with three arguments:

assim <initfile> <start time index> <end time index>

All assimilation cycles be between the two time indexes are performed in chronological
order.

14

6.2 Program genobsoper

The standalone program genobsoper generate the observation matrix.

genobsoper <initfile> <time index>

The first argument is the initialisation file and the second argument is the time index of
the observation for witch the observation operator has to be created. All keys described
in 4.2 have the same meaning for the program genobsoper. But the only diagnostic key
used is DiagXXX.H.
If the program is called with three arguments:

genobsoper <initfile> <start time index> <end time index>

The action is repeated for all time indexes between the start and the end time index.

6.3 Program applyobsoper

The standalone program applyobsoper extracts from a state vector the observations.

applyobsoper <initfile> <time index>

The first argument is the initialisation file and the second argument is the time index of
the observation for witch the observation operator has to be created. All keys described
in 4.2 have the same meaning for the program applyobsoper. But the only diagnostic
key used are DiagXXX.Hxf and DiagXXX.invsqrtR. If a scalar observation point has been
eliminated (out of the model grid for example) its weight in DiagXXX.invsqrtR is zero.
The state vector is specified as it is described in 6.1.
If the program is called with three arguments:

applyobsoper <initfile> <start time index> <end time index>

The action is repeated for all time indexes between the start and end time index.

6.4 Program filteroper

The standalone program filteroper generates a sparse matrix witch acts as a spatial
filter in the model space.

filteroper <initfile>

For each variable the filter is a Gaussian function:

f(x, y, z, x′, y′, z′) = Ne
− (x−x′)2

L2
x
− (y−y′)2

L2
y
− (z−z′)2

L2
z (39)

N is a normalisation factor taking in to account the land-sea mask. The parameters Lx,
Ly and Lz may be space dependent and have thus the same dimension as the state vector.
The required keys are:

15

Key Type Description

Model.mask vector of strings sea-land mask of each variable
Model.gridX vector of strings longitude of each variable (degenerated file)
Model.gridY vector of strings latitude of each variable (degenerated file)
Model.gridZ vector of strings depth
Model.path string The path is prepended to all filenames spec-

ified in Model.*. The current path is used
by default.

Correlation.lenx vector of strings parameter Lx in equation 39
Correlation.leny vector of strings parameter Ly in equation 39
Correlation.lenz vector of strings parameter Lz in equation 39
Correlation.path string The path is prepended to all filenames spec-

ified in Correlation.*. The current path is
used by default.

Filter string file name of the filter

6.5 Program opermul

opermul is a general purpose program witch multiply two sparse operators. It can be
used for example for multiplying a filter operator and a observation operator.

O3 = O2O1 (40)

O1 is a operator mapping from space S1 to S2, O2 from S2 to S3 and thus the product
from S1 to S3.

opermul <initfile>

The required keys are:

Key Type Description

Space1.mask vector of strings sea-land mask of space S1

Space1.path string The path is prepended to all filenames spec-
ified in Space1.mask. The current path is
used by default.

Space2.mask vector of strings sea-land mask of space S1

Space2.path string The path is prepended to all filenames spec-
ified in Space2.mask. The current path is
used by default.

Space3.mask vector of strings sea-land mask of space S1

Space3.path string The path is prepended to all filenames spec-
ified in Space2.mask. The current path is
used by default.

Term1 string file name of operator O1

Term2 string file name of operator O2

Product string file name of the product O3

16

6.6 Matlab utility GenObsFile

The utility ”GenObsFile” provides an easy way to save all the observations, coming from
various sources, in a few files with the NetCDF format, and creates the .INIT file required
by the assimilation routines.
Options for GenObsFile must be specified in the header of the Matlab routine, as de-
scribed below:

• initheader: complete path & file name, of the file that must be copied on top of the
.INIT file. This could be the ”model” part of the .INIT file.

• diags: complete path & file of a sample ”diagnostic” part of the .INIT file. The
observation number should be replaced with <INDEX> and variable names with
<EXT>. This part will be (adapted and) copied for each observation set.

Example:

Diag<INDEX>.Hxf = [’xf.<EXT>’]

• Outdir : path where to store the new observations and .INIT file.

• Outfile : prefix of the new observation files

• maxX, minX, maxY, ..., minMJD: observations not within these ranges will be
ignored when creating the new observation files

• rmse : vector containing errors on the observations, in the following order:

[TEM SAL ETA other]=[...]

It will only be used by the assimilation routine if no other observation error covari-
ance R matrix is specified. GenObsFile only uses values corresponding to variables
present in your observations list.

• obstime : time of the day at which observations should be assimilated

• listfile : complete path+file name for the listfile, which contains the original ob-
servations. It is build using sections. There must be at least one section in the
listfile. Each section contains a ”config” line followed by an arbitrary amount of
data lines. The config line starts with the keyword ’config’, and has the following
format: config VAR X Y Z MJD

– VAR indicates how the observed data should be named in the .INIT file (TEM
...)

– X might be (a) a complete path+file name with the longitude data, corre-
sponding to the observations, (b) the keyword ’file’ if the longitude data is
written in a file with the same file name as the actual data, with extension .X

17

– Y (idem)

– Z (idem)

– MJD points to the file containing the MJD-time corresponding to the

– observations, and might be (a) a complete path+file name, (b) the

– keyword ’file’, (c) a datum in the format 1999-12-31, (d) a datum in

– the MJD format ’51251’, (e) character limits to be found in the

– actual observations file name.

For example, if the actual file name is /home/johndoe/51657.TEM , MJD could
be 15-19 as those are the indexes pointing to 51657 in the file name. After each
config line, an arbitrary amount of observation files may be given. The filenames
may contain matrix delimiters, as in (1:100,2:5,:)

Example listfile:

config TEM ./Lion.X ./Lion.Y ./Lion.Z 1998-01-01

/home/johndoe/observations/Lion00000480.TEM.gz(:,:,end)

config SAL ./Lion.X ./Lion.Y ./Lion.Z 1998-01-01

/home/johndoe/observations/Lion00000480.SAL.gz(:,:,end)

config TEM file file file file

/home/johndoe/observations/ctd02.1_03_aug_2241.TEM

/home/johndoe/observations/ctd03.1_03_aug_1840.TEM

/home/johndoe/observations/ctd04.1_04_aug_0747.TEM

config TEM ./ligur.SST.X ./ligur.SST.Y ./ligur.SST.Z 32-41

/scratch/johndoe/observtn/ligur1999-07-02.SST.gz

/scratch/johndoe/observtn/ligur1999-07-03.SST.gz

/scratch/johndoe/observtn/ligur1999-07-04.SST.gz

/scratch/johndoe/observtn/ligur1999-07-10.SST.gz

/scratch/johndoe/observtn/ligur1999-07-11.SST.gz

7 API

7.1 ufileformat

uload(filename,matrix,exclusion value)

filename : character of strings, input. The filename of the matrix to load with
the extensions described in 2.

matrix : 1D, 2D or 3D unallocated real pointer, output. The allocation of the
output matrix is done inside the subroutine.

18

exclusion value : real, output: The exclusion value

usave(filename,matrix,exclusion value)

filename : character of strings, input. The filename of the matrix to save.

matrix : 1D, 2D or 3D real matrix, input. The matrix to save.

exclusion value : real, input: The exclusion value

References

D. P. Dee and A. Silva. Data assimilation in the presence of forecast bias. Quarterly
Journal of the Royal Meteorological Society, 124:269–295, 1998.

19

	Structure of the software
	Module: ufileformat
	Order of the dimensions

	The initialisation file
	Assimilation module
	Reduced order analysis
	Configuration
	The model
	Zones
	The observations
	Diagnostics
	miscellaneous flags

	Data structures
	Standalone programs
	Program assim
	Program genobsoper
	Program applyobsoper
	Program filteroper
	Program opermul
	Matlab utility GenObsFile

	API
	ufileformat

