SANGOMA WP5 Data assessment

L. BERTINO, NERSC, Bergen

SANGOMA 2nd yearly meeting, Liège, 1st April 2014

Objectives

- Assess the impact of new remote sensed ocean data on the model state estimations and their potential in a data assimilation setup.
- A preparatory step before those observations are assimilated in an operational context.
- Partners: ULg, UREAD, CNRS-LEGI, CNRS-LEGOS, NERSC

Tasks

- Task 5.1 Identify new data types
- Task 5.2 Assessing observing systems
- Task 5.3 Expts. Large-scale models
- Task 5.4 Exp in regional scale models
- Task 5.5 Lagrangian sea ice parameters
- Task 5.6 Prior errors detection by observational arrays

Task 5.1 Identify new data types

Fedje aSonde Measu

- Surface salinity, SST (geost. Sat.)
- Coastal altimetry, gliders, HF radars
 - Observation operators?

NERSC

Error characteristics? (spatial scales)

Task 5.2 Assessing observing systems

- LEGI, ULg, UREAD
- Degrees of Freedom of Signal (DFS)
- Non linear methods from WP3
 - Entropy, anamorphosis
- NEMO benchmark

Sensitivity to space-time sampling (G. Candille, CNRS-LEGI)

Task 5.3 Expts. Large-scale models

- ULg, CNRS-LEGI
- NEMO configuration
- Non-linear assimilation methods from WP4
- Validation with MyOcean and SeaDataNet data

Assimilation with 3D perturbations (Guillem Candille, LEGI)

Ensemble mean

Task 5.4 Exp in regional scale models

- ULg
- ROMS in Ligurian Sea 1/60th Deg.
- HF radar data
- Same validation approach as in Task 5.3

Assessment of HF Radar assimilation (A. Barth, ULg)

44.4

44.2

44

43.8

43.6

- ROMS nested (off-line) in the Mediterranean Ocean Forecasting System
- 1/60 degree resolution and 32 vertical levels
- Atmospheric forcings come from the limitedarea model COSMO (hourly at 2.8 km resolution)
- Currents: Western & Eastern Corsican Current, Northern Current, inertial oscillations, mesoscale currents
- Two WERA HF radar systems (Palmaria, San Rossore) by NATO Undersea Research Centre (NURC) from 2009 to 2010.

MERS

Surface temperature and velocity (2010-07-06)

27

26.5

26

25.5

25

24.5

24

23.5

Model error covariance

(will be exposed in details by A. Barth tomorrow...)

- Estimated by ensemble simulation (with 100 members) where the uncertain aspects of the model are perturbed
- Perturbed zonal and meridional wind forcing
- Perturbed boundary conditions (elevation, velocity, temperature and salinity)
- Perturbed momentum equation
- Experience with covariance localization→ covariance envelope based on:
 - Statistical robustness of increment (similar to bootstrapping)
- **NERSC** Expected error reduction

Hypothetical observations in the interior of the model domain

- Observation located at 8.8250 W and 43.3250 N
- Significant spurious long-range correlation, especially with parts of the domain having a large error variance
- The localization function naturally selects corrections near the location of the observations.

Task 5.5 Lagrangian sea ice parameters

- NERSC
- Sea ice strength parameter from the EVP rheology.
- A Lagrangian forward model for the parameter
- Otherwise parameter estimation by a standard state augmentation procedure.
- Qualitative validation against ice types.

Background: ice drift in the EVP sea ice model (from TOPAZ reanalysis)

Ice drifts too fast, seasonal signal phased off

Global Ocean Studies - Operational Oceanography

Can assimilation or tuning fix this?

NERSC

Tuning of the drag coefficient?

Needs endlessly repeated tuning

NERSC

Automatic parameter estimation?

State space augmentation? Work by Massonnet et al. (UCL and NERSC)

	Parameters calibrated	P*	C_w	C_a
		[10 ⁴ Nm ⁻²]	$[10^{-3}]$	[10 ⁻³]
Twin	P^* , C_w and C_a	1.98	5.04	1.40
C1	P*	0.94	(5.00)	(1.40)
C2	P^* and C_w	0.98	2.68	(1.40)
C3	P^* , C_w and C_a	0.81	2.31	0.81
Reference		2.00	5.00	1.40

- NEMO LIM2 model
- DEnKF, 25 members
- Assimilation of satellite ice drift
- Global parameters in augmented state vector.
 - Laboratory for Lagrangian parameters

NERS Vorks better with 2 parameters than with 3...

Effect on ice drift velocities (Massonnet et al. in review)

Sea ice drift: April 12th, 2012 to April 14th, 2012

Partial success: Improved match to the observations assimilated.

Can one calibrate wrong physics?

Ice thickness Video 1: one year of EVP (Sakov et al. 2012 NERSC)

EVP (Elastic Viscous Plastic) = fluid dynamics

NERSC

Ice thickness Video 2: 11 days of EB model (Bouillon & Rampal, NERSC)

EB (Elastic-Brittle) = solid mechanics

Designed to represent the linear sea ice deformations statistics

Global Ocean Studies - Operational Oceanography

Task 5.6 Prior errors detection by observational arrays

- CNRS-LEGOS
- Representer Matrix Spectrum in asynchronous (4D) mode.
 - A modular formulation: portability to other Ensemble-based systems
 - Regional array performance assessment, Bay of Biscay, BELUGA EnKF implementation. Observations as in Task 5.1.
 - Large-scale array performance assessment in 1-2 other Ensemble-based assimilation systems.

Deliverables

- D5.1 List of remote-sensed variables with their associated characteristics (Completed, M12, all)
- D5.2 Report on the impact of new ecosystem data (M36, **CNRS-LEGI**)
- D5.3, D5.4 Results of a data assimilation experiment with a large-scale ocean model (ongoing V1 at M36, V2 at M48, CNRS-LEGI)
- D5.5, D5.6 Results of a data assimilation experiment with a regional-scale ocean model (ongoing V1 at M36, V2 at M48, ULg)
- D5.7: Result of the data assimilation experiment aiming to estimate Lagrangian sea ice parameters (M48, NERSC)
- D5.8: RMSpectrum library and results of array performance analyses (M48, CNRS-LEGOS)

NERSC DA
3 and

M36 = 31 Oct 2014 M48 = 31 Oct 2015

