
Object-Oriented Prediction System

Yannick Trémolet

ECMWF

November 2013

Y. Trémolet OOPS November 2013

Why OOPS?

The IFS is a very good global weather forecasting system. However,
continuous improvements are necessary to stay at the forefront.

There is uncertainty in scientific methods that will be used in the future, for
example in the data assimilation and dynamical core areas.

Scalability has become a major concern in view of new computer
architectures: addressing it will require significant algorithmic changes.

I The code can be optimized routine by routine to increase scalability only up to
a certain point.

I Significant leaps in the level of available parallelism can only be achieved
through scientific progress in the formulation of the algorithms.

A very flexible code is needed to test such developments and ideas.

The code must also be reliable, efficient and readable.

Y. Trémolet OOPS November 2013 1 / 12

Flexible

It should be easy to modify the system (new science, new functionality,
better scalability...)

Different concepts should be treated in different parts of the code.

A requirement is that a change to one aspect should not imply changes all
over the place.

I No code duplication: same modification in many places but also difficult to
find and leads to bugs.

I No global variables: a modification might have unforeseen consequences
anywhere.

I Think of it in terms of locality in the source code (as opposed to discontinous
code that jumps all over the place).

Y. Trémolet OOPS November 2013 2 / 12

Reliable

The code must run without crashing.

Additional aspects of reliablity are application dependent.

For a system like the IFS, the code must do what the user thinks it does:
I Many experiments are wasted because it is not always the case.
I The code must run with the user supplied value (namelist, xml) or abort.

No, a print in a many-Mb-long logfile is not enough!

No, you are not the only one using that variable!

A controlled abort with a clear error message is not a crash: it saves
computer and user time (our time).

Lots of testing:
I Internal consistency and correctness of results (not scientific evaluation),
I Mecanism to run all the tests easily,
I Tests run automatically on push to source repository (ECMWF).

Y. Trémolet OOPS November 2013 3 / 12

Reliable

The code must run without crashing.

Additional aspects of reliablity are application dependent.

For a system like the IFS, the code must do what the user thinks it does:
I Many experiments are wasted because it is not always the case.
I The code must run with the user supplied value (namelist, xml) or abort.

No, a print in a many-Mb-long logfile is not enough!

No, you are not the only one using that variable!

A controlled abort with a clear error message is not a crash: it saves
computer and user time (our time).

Lots of testing:
I Internal consistency and correctness of results (not scientific evaluation),
I Mecanism to run all the tests easily,
I Tests run automatically on push to source repository (ECMWF).

Y. Trémolet OOPS November 2013 3 / 12

Reliable

The code must run without crashing.

Additional aspects of reliablity are application dependent.

For a system like the IFS, the code must do what the user thinks it does:
I Many experiments are wasted because it is not always the case.
I The code must run with the user supplied value (namelist, xml) or abort.

No, a print in a many-Mb-long logfile is not enough!

No, you are not the only one using that variable!

A controlled abort with a clear error message is not a crash: it saves
computer and user time (our time).

Lots of testing:
I Internal consistency and correctness of results (not scientific evaluation),
I Mecanism to run all the tests easily,
I Tests run automatically on push to source repository (ECMWF).

Y. Trémolet OOPS November 2013 3 / 12

Reliable

The code must run without crashing.

Additional aspects of reliablity are application dependent.

For a system like the IFS, the code must do what the user thinks it does:
I Many experiments are wasted because it is not always the case.
I The code must run with the user supplied value (namelist, xml) or abort.

No, a print in a many-Mb-long logfile is not enough!

No, you are not the only one using that variable!

A controlled abort with a clear error message is not a crash: it saves
computer and user time (our time).

Lots of testing:
I Internal consistency and correctness of results (not scientific evaluation),
I Mecanism to run all the tests easily,
I Tests run automatically on push to source repository (ECMWF).

Y. Trémolet OOPS November 2013 3 / 12

Efficient vs. Readable

The IFS is one of the most computationaly efficient and scalable weather
forecasting systems.

The maintenance cost has become very high and new releases take longer
and longer to create and debug.

It is more and more difficult for newcomers to learn the system and it takes
longer to be productive.

Readable code is not less efficient.

Readability is staff efficiency: it is as important as computational efficiency
(it’s just more difficult to measure).

Y. Trémolet OOPS November 2013 4 / 12

Object-Oriented

Flexible, reliable, readable, efficient.

This is not specific to the IFS: all developers want codes that are modular,
reliable, flexible and efficient.

Since the IFS was designed, in the late 1980’s, the software industry has
progressed tremendously to make this possible.

The techniques that have emerged to answer these needs are called generic
and object-oriented programming.

We have started to re-design our system using this technology in the

Object-Oriented Prediction System (OOPS).

Y. Trémolet OOPS November 2013 5 / 12

Object-Oriented and Weather Forecasting

The weather forecasting problem can be broken into manageable pieces:
I Data assimilation (or ensemble prediction) can be described without knowing

the specifics of a model or observations.
I Minimisation algorithms can be written without knowing the details of the

matrices and vectors involved.
I Development of a dynamical core on a new model grid should not require

knowledge of the data assimilation algorithm.

All aspects exist but scientists focus on one aspect at a time: the code
should reflect this.

Object-oriented programming does not solve scientific problems in itself: it
provides a more powerful way to tell the computer what to do.

OOPS currently stops at the level of the calls to the forecast model and
observation operators but the same principle could be applied at any level.

Y. Trémolet OOPS November 2013 6 / 12

What is OOPS?

Applications Building Blocks Models

●States
●Observations
●Covariances
●Increments...

●Forecast
●4D-Var
●EDA
●EPS
●EnKF...

●Lorenz 95
●QG
●IFS
●NEMO
●Surface...

OOPS

The high levels Applications use abstract building blocks.

The Models implement the building blocks.

OOPS is independent of the Model being driven.

Y. Trémolet OOPS November 2013 7 / 12

OOPS Implementation

We have defined a small set of abstract classes that encompasses most
entities required for data assimilation.

I Biases (model and observations) will also be needed.

For practical implementation, a few more classes will be useful.

Utility classes:
I Config, DateTime, Duration, Logger...

Auxiliary classes:
I Geometry, ModelConfiguration, TLM (Trajectory), Locations,

ModelAtLocations (GOM)

Y. Trémolet OOPS November 2013 8 / 12

OOPS Classes

OOPS requires a consistent set of classes that work together with predefined
interfaces:

I In model space:

1. Geometry
2. State
3. Increment
4. ModelConfiguration
5. LinearModel (Trajectory)

I In observation space:

6. ObsOperator
7. ObsAuxControl;
8. ObsAuxIncrement;
9. ObsVector

10. ObsOperatorTrajectory;

I To make the link:

11. Locations
12. ModelAtLocations

I Covariance matrices (if generic ones
are not used):

13. Model space (B and Q)
14. Observation space (R)
15. Localization (4D-Ens-Var)

Approximately 100 methods to be implemented (in Fortran or not).

Observation and model errors (biases) will be added.

Y. Trémolet OOPS November 2013 9 / 12

Model Trait Definition

Actual implementation Name used in OOPS
⇓ ⇓

struct QgTraits {
typedef qg:: QgGeometry Geometry;
typedef qg:: QgState State;
typedef qg:: QgModel ModelConfiguration;
typedef qg:: QgIncrement Increment;
typedef qg:: QgTLM LinearModel;
typedef oops:: NullModelAux ModelAuxControl;
typedef oops:: NullModelAux ModelAuxIncrement;

typedef qg:: QgObservation ObsOperator;
typedef qg:: ObsTrajQG ObsOperatorLinearizationTrajectory;
typedef oops:: NullObsAux ObsAuxControl;
typedef oops:: NullObsAux ObsAuxIncrement;
typedef qg:: ObsVecQG ObsVector;

typedef qg:: LocQG Locations;
typedef qg:: GomQG ModelAtLocations;

typedef qg:: LocalizationMatrixQG LocalizationMatrix;
};

The trait is used as a template argument <MODEL>: compile time polymorphism.

Y. Trémolet OOPS November 2013 10 / 12

Model Trait Definition

Actual implementation Name used in OOPS
⇓ ⇓

struct IfsTraits {
typedef ifs:: GeometryIFS Geometry;
typedef ifs:: StateIFS State;
typedef ifs:: ModelIFS ModelConfiguration;
typedef ifs:: IncrementIFS Increment;
typedef ifs:: LinearModelIFS LinearModel;
typedef oops:: NullModelAux ModelAuxControl;
typedef oops:: NullModelAux ModelAuxIncrement;

typedef ifs:: AllObs ObsOperator;
typedef ifs:: AllObsTraj ObsOperatorLinearizationTrajectory;
typedef oops:: NullObsAux ObsAuxControl;
typedef oops:: NullObsAux ObsAuxIncrement;
typedef ifs:: ObsVector ObsVector;

typedef ifs:: LocationsIFS Locations;
typedef ifs:: GomsIFS ModelAtLocations;

typedef ifs:: LocalizationMatrixIFS LocalizationMatrix;
};

The trait is used as a template argument <MODEL>: compile time polymorphism.

Y. Trémolet OOPS November 2013 10 / 12

Run time vs. Compile time polymorphism

The model is chosen at compile time via template instantiation.

#include "mains/RunQg.h"
#include "model/QgTraits.h"
#include "oops/runs/Forecast.h"

int main(int argc , char ** argv) {
qg::RunQg < oops::Forecast <qg::QgTraits > > run(argc , argv);
int info = run.execute ();
return info;

};

ifs::RunIfs < oops::Forecast <ifs::IfsTraits > > run(argc , argv);

The covariance matrices are chosen at run time because some are generic
(Ensemble or hybrid B, diagonal R).

The classes in the trait definition might be abstract base classes (see
QgObservation).

Y. Trémolet OOPS November 2013 11 / 12

Encapsulating Fortran Code in C++ Classes

C++ Interface (ISO) Fortran

subroutine do_work(c_self)
use iso_c_bindings
use mytype_mod

type(c_ptr) :: c_self
type(mytype), pointer :: self

call c_f_pointer(c_self, self)
call do_it(self)

end subroutine do_work

Class MyClass {
public:
 MyClass() {
 create_data(&data_);
 }

 ~Myclass() {
 delete_data(&data_);
 }

 doSomething() {
 do_work(&data_);
 }

private:
 Fdata * data_;
}

// Give a class to pointer
Class Fdata {};

module mytype_mod

type mytype
! some contents here...
end type mytype

contains

subroutine create(self)
type(mytype) :: self
! allocate and setup...
end subroutine create

subroutine delete(self)
type(mytype) :: self
! deallocate...
end subroutine delete

subroutine do_it(self)
type(mytype) :: self
! do the work...
end subroutine do_it

end module mytype_mod

No static variable of type mytype is declared in the module!

The Fortran module does not know about C++: it is fully usable in the rest
of the Fortran code.

Y. Trémolet OOPS November 2013 12 / 12

Encapsulating Fortran Code in C++ Classes

C++ Interface (ISO) Fortran

subroutine create_data(c_self)
use iso_c_bindings
use mytype_mod

type(c_ptr) :: c_self
type(mytype), pointer :: self

allocate(self)
call create(self)
c_self = c_loc(self)

end subroutine create_data

Class MyClass {
public:
 MyClass() {
 create_data(&data_);
 }

 ~Myclass() {
 delete_data(&data_);
 }

 doSomething() {
 do_work(&data_);
 }

private:
 Fdata * data_;
}

// Give a class to pointer
Class Fdata {};

module mytype_mod

type mytype
! some contents here...
end type mytype

contains

subroutine create(self)
type(mytype) :: self
! allocate and setup...
end subroutine create

subroutine delete(self)
type(mytype) :: self
! deallocate...
end subroutine delete

subroutine do_it(self)
type(mytype) :: self
! do the work...
end subroutine do_it

end module mytype_mod

No static variable of type mytype is declared in the module!

The Fortran module does not know about C++: it is fully usable in the rest
of the Fortran code.

Y. Trémolet OOPS November 2013 12 / 12

Encapsulating Fortran Code in C++ Classes

C++ Interface (ISO) Fortran

subroutine do_work(c_self)
use iso_c_bindings
use mytype_mod

type(c_ptr) :: c_self
type(mytype), pointer :: self

call c_f_pointer(c_self, self)
call do_it(self)

end subroutine do_work

Class MyClass {
public:
 MyClass() {
 create_data(&data_);
 }

 ~Myclass() {
 delete_data(&data_);
 }

 doSomething() {
 do_work(&data_);
 }

private:
 Fdata * data_;
}

// Give a class to pointer
Class Fdata {};

module mytype_mod

type mytype
! some contents here...
end type mytype

contains

subroutine create(self)
type(mytype) :: self
! allocate and setup...
end subroutine create

subroutine delete(self)
type(mytype) :: self
! deallocate...
end subroutine delete

subroutine do_it(self)
type(mytype) :: self
! do the work...
end subroutine do_it

end module mytype_mod

No static variable of type mytype is declared in the module!

The Fortran module does not know about C++: it is fully usable in the rest
of the Fortran code.

Y. Trémolet OOPS November 2013 12 / 12

Object-Oriented Prediction System

Yannick Trémolet

ECMWF

November 2013

Y. Trémolet OOPS Design November 2013

Getting OOPS

The main point of information about OOPS is the wiki page:
https://software.ecmwf.int/wiki/display/OOPS/OOPS+Home

The source code is accessible from the git repository (via stash):
https://software.ecmwf.int/stash/projects/OOPS

The IFS component are in the usual perforce repository.

Y. Trémolet OOPS Design November 2013 1 / 34

OOPS Design

Why OOPS?
I What do we want to develop?
I Why cannot we do it in the IFS?

OOPS General Design
I How can we adress the problems above?
I What basic classes do we need (building blocks)?
I Run time vs. compile time polymorphism

Details of some classes
I Basic classes: State, Observations
I Building a DA system: CostFunction, Minimizer

Not enough time to cover every class in OOPS
I Enough to understand the main structure
I Examples of “object-thinking”

Y. Trémolet OOPS Design November 2013 2 / 34

Outline

1 The IFS

2 OOPS Design: Abstract Level

3 Implementing the Abstract Design: Building Blocks

4 Implementing the Abstract Design: Applications

5 Some General Comments

Y. Trémolet OOPS Design November 2013

The IFS was designed for 4D-Var

Jo

Jo Jo
Jo

Assimilation window

Time

Observations

Background

Jb

The initial state is integrated forward and compared with the observations.

The 4D-Var cost function is computed

J(x0) =
1

2

n∑
i=0

[H(xi)− yi]
TR−1

i [H(xi)− yi] +
1

2
(x0 − xb)TB−1(x0 − xb)

and minimized using an incremental approach.

Y. Trémolet OOPS Design November 2013 3 / 34

The IFS was designed for 4D-Var

Jo

Jo Jo
Jo

Assimilation window

Time

Observations

Background

Jb

The initial state is integrated forward and compared with the observations.

The 4D-Var cost function is computed

J(x0) =
1

2

n∑
i=0

[H(xi)− yi]
TR−1

i [H(xi)− yi] +
1

2
(x0 − xb)TB−1(x0 − xb)

and minimized using an incremental approach.

Y. Trémolet OOPS Design November 2013 3 / 34

Weak Constraint 4D-Var

time

δx1

xb

Jb δx0

δx2

Jq

Jq

δx3

Jq

The control variable is the state at several points in time.

There are additional terms in the cost function.

Model integrations over each sub-window are independent.

We need several states!

The nature of the optimization problem is different: we need to explore dual
space (i.e. observation space) algorithms (or mixed primal/dual).

Y. Trémolet OOPS Design November 2013 4 / 34

Weak Constraint 4D-Var

time

δx1

xb

Jb δx0

δx2

Jq

Jq

δx3

Jq

The control variable is the state at several points in time.

There are additional terms in the cost function.

Model integrations over each sub-window are independent.

We need several states!

The nature of the optimization problem is different: we need to explore dual
space (i.e. observation space) algorithms (or mixed primal/dual).

Y. Trémolet OOPS Design November 2013 4 / 34

More Scalability in 4D-Var

0

1000

2000

3000

4000

T
im

e
 (

se
c.

)

58%

66%

79%

Scalability estimate 12h 4D-Var (36r4)

48 nodes (actual)

96 nodes (actual)

96 nodes 1 exec

96 nodes 2x6hours

Estimates from Deborah Salmond

Incremental 4D-Var in the IFS is
achieved by executing the IFS
several times.

Running 1 executable instead of 7
would reduce I/O and start-up
costs.

We need states and increments at
different resolutions (inner and
outer loops).

Y. Trémolet OOPS Design November 2013 5 / 34

Another concern: IFS complexity

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0.0

0.5

1.0

1.5

2.0
Li

n
e
s

o
f

co
d
e
 (

x
 1

,0
0
0
,0

0
0
)

0

20

40

60

80

100

120

140

IF
 s

ta
te

m
e
n
ts

 (
x
 1

,0
0
0
)

It means growth of maintenance, development costs, and number of bugs.

Y. Trémolet OOPS Design November 2013 6 / 34

Current situation in the IFS

Most high level routines don’t have arguments (global variables).
I Assumes that there is only one state, one set of observations, one...
I Algorithms not envisaged at the outset (25+ years ago) are extremely difficult

to implement.

Setup routines are separated from the rest of the code.
I All variables have to be accessible from four places (module, namelist, setup,

subroutine) instead of one.

Entities are not always independent.
I HTR−1H is one piece (jumble) of code.

No structure exists to manipulate vectors in observation space (or in model
space!).

I Observation space algorithms are practically impossible to implement.

The nonlinear model M can only be integrated once per execution.
I Algorithms that require several calls to M can only be written at script level.
I It is not possible to run 4D-Var in one executable which affects performance.

In practice, only one resolution can be used per execution.

Y. Trémolet OOPS Design November 2013 7 / 34

Outline

1 The IFS

2 OOPS Design: Abstract Level

3 Implementing the Abstract Design: Building Blocks

4 Implementing the Abstract Design: Applications

5 Some General Comments

Y. Trémolet OOPS Design November 2013

OOPS Analysis and Design

What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

States :

I Input, output (raw or post-processed).
I Interpolate.
I Move forward in time (using the model).
I Copy, assign.

Observations :

I Input, output.
I Compute observation equivalent from a state (observation operator).
I Copy, assign.

We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet OOPS Design November 2013 8 / 34

OOPS Analysis and Design

What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

States :

I Input, output (raw or post-processed).
I Interpolate.
I Move forward in time (using the model).
I Copy, assign.

Observations :

I Input, output.
I Compute observation equivalent from a state (observation operator).
I Copy, assign.

We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet OOPS Design November 2013 8 / 34

OOPS Analysis and Design

What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

States :

I Input, output (raw or post-processed).
I Interpolate.
I Move forward in time (using the model).
I Copy, assign.

Observations :

I Input, output.
I Compute observation equivalent from a state (observation operator).
I Copy, assign.

We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet OOPS Design November 2013 8 / 34

OOPS Analysis and Design

What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

States properties:
I Input, output (raw or post-processed).
I Interpolate.
I Move forward in time (using the model).
I Copy, assign.

Observations :

I Input, output.
I Compute observation equivalent from a state (observation operator).
I Copy, assign.

We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet OOPS Design November 2013 8 / 34

OOPS Analysis and Design

What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

States properties:
I Input, output (raw or post-processed).
I Interpolate.
I Move forward in time (using the model).
I Copy, assign.

Observations properties:
I Input, output.
I Compute observation equivalent from a state (observation operator).
I Copy, assign.

We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet OOPS Design November 2013 8 / 34

OOPS Analysis and Design

What is data assimilation?
Data assimilation is finding the best estimate (analysis) of the state of the
atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

States properties:
I Input, output (raw or post-processed).
I Interpolate.
I Move forward in time (using the model).
I Copy, assign.

Observations properties:
I Input, output.
I Compute observation equivalent from a state (observation operator).
I Copy, assign.

We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored.

Y. Trémolet OOPS Design November 2013 8 / 34

OOPS Analysis and Design

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n∑
i=0

[H(xi)− yi]
TR−1

i [H(xi)− yi]

Increments:
I Basic linear algebra operators,
I Evolve forward in time linearly and backwards with adjoint.
I Compute as difference between states, add to state.

Departures:
I Basic linear algebra operators,
I Compute as difference between observations, add to observations,
I Compute as linear variation in observation equivalent as a result of a variation

of the state (linearized observation operator).
I Output (for diagnostics).

Covariance matrices:

I Setup,
I Multiply by matrix (and possibly its inverse).

Y. Trémolet OOPS Design November 2013 9 / 34

OOPS Analysis and Design

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n∑
i=0

[H(xi)− yi]
TR−1

i [H(xi)− yi]

Increments:
I Basic linear algebra operators,
I Evolve forward in time linearly and backwards with adjoint.
I Compute as difference between states, add to state.

Departures:
I Basic linear algebra operators,
I Compute as difference between observations, add to observations,
I Compute as linear variation in observation equivalent as a result of a variation

of the state (linearized observation operator).
I Output (for diagnostics).

Covariance matrices:

I Setup,
I Multiply by matrix (and possibly its inverse).

Y. Trémolet OOPS Design November 2013 9 / 34

OOPS Analysis and Design

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n∑
i=0

[H(xi)− yi]
TR−1

i [H(xi)− yi]

Increments:
I Basic linear algebra operators,
I Evolve forward in time linearly and backwards with adjoint.
I Compute as difference between states, add to state.

Departures:
I Basic linear algebra operators,
I Compute as difference between observations, add to observations,
I Compute as linear variation in observation equivalent as a result of a variation

of the state (linearized observation operator).
I Output (for diagnostics).

Covariance matrices:
I Setup,
I Multiply by matrix (and possibly its inverse).

Y. Trémolet OOPS Design November 2013 9 / 34

OOPS Abstract Design

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n∑
i=0

[H(xi)− yi]
TR−1

i [H(xi)− yi]

The 4D-Var problem, and the algorithm to solve it, can be described with a
very limited number of entities:

I Vectors: x, y, g and δx.
I Covariances matrices: B, R (and eventually Q).
I Two operators and their linearised counterparts: M, M, MT , H, H, HT .

All data assimilation schemes manipulate the same limited number of entities.

For future (unknown) developments these entities should be easily available
and reusable.

We have not mentioned any details about how any of the operations are
performed, how data is stored or what the model represents.

Y. Trémolet OOPS Design November 2013 10 / 34

OOPS Abstract Design

OOPS is independent of the model and the physical system it represents.

Flexibility (including yet unknown future development) requires that this goes
both ways.

The Models do not know about the high level algorithm currently being run:
I All actions are driven by OOPS,
I All data, input and output, is passed by arguments.

Models interfaces must be general enough to cater for all cases, and detailed
enough to be able to perform the required actions.

OOPS currently stops at the level of the calls to the forecast model and
observation operators but the same principle could be applied at any level.

Y. Trémolet OOPS Design November 2013 11 / 34

OOPS Abstract Design

Applications Building Blocks Models

●States
●Observations
●Covariances
●Increments...

●Forecast
●4D-Var
●EDA
●EPS
●EnKF...

●Lorenz 95
●QG
●IFS
●NEMO
●Surface...

OOPS

The high levels Applications use abstract building blocks.

The Models implement the building blocks.

OOPS is independent of the Model being driven.

Y. Trémolet OOPS Design November 2013 12 / 34

Outline

1 The IFS

2 OOPS Design: Abstract Level

3 Implementing the Abstract Design: Building Blocks

4 Implementing the Abstract Design: Applications

5 Some General Comments

Y. Trémolet OOPS Design November 2013

OOPS Implementation

We have defined a small set of abstract classes that encompasses most
entities required for data assimilation.

I Biases (model and observations) will also be needed.

For practical implementation, a few more classes will be useful.

Utility classes:
I Config, DateTime, Duration, Logger...

Auxiliary classes:
I Geometry, ModelConfiguration, TLM (Trajectory), Locations,

ModelAtLocations (GOM)

Y. Trémolet OOPS Design November 2013 13 / 34

OOPS Classes

OOPS requires a consistent set of classes that work together with predefined
interfaces:

I In model space:

1. Geometry
2. State
3. Increment
4. ModelConfiguration
5. LinearModel (Trajectory)

I In observation space:

6. ObsOperator
7. ObsAuxControl;
8. ObsAuxIncrement;
9. ObsVector

10. ObsOperatorTrajectory;

I To make the link:

11. Locations
12. ModelAtLocations

I Covariance matrices (if generic ones
are not used):

13. Model space (B and Q)
14. Observation space (R)
15. Localization (4D-Ens-Var)

Approximately 100 methods to be implemented (in Fortran or not).

Observation and model errors (biases) will be added.

Y. Trémolet OOPS Design November 2013 14 / 34

Model Trait Definition

Actual implementation Name used in OOPS
⇓ ⇓

struct QgTraits {
typedef qg:: QgGeometry Geometry;
typedef qg:: QgState State;
typedef qg:: QgModel ModelConfiguration;
typedef qg:: QgIncrement Increment;
typedef qg:: QgTLM LinearModel;
typedef oops:: NullModelAux ModelAuxControl;
typedef oops:: NullModelAux ModelAuxIncrement;

typedef qg:: QgObservation ObsOperator;
typedef qg:: ObsTrajQG ObsOperatorLinearizationTrajectory;
typedef oops:: NullObsAux ObsAuxControl;
typedef oops:: NullObsAux ObsAuxIncrement;
typedef qg:: ObsVecQG ObsVector;

typedef qg:: LocQG Locations;
typedef qg:: GomQG ModelAtLocations;

typedef qg:: LocalizationMatrixQG LocalizationMatrix;
};

The trait is used as a template argument <MODEL>: compile time polymorphism.

Y. Trémolet OOPS Design November 2013 15 / 34

Model Trait Definition

Actual implementation Name used in OOPS
⇓ ⇓

struct IfsTraits {
typedef ifs:: GeometryIFS Geometry;
typedef ifs:: StateIFS State;
typedef ifs:: ModelIFS ModelConfiguration;
typedef ifs:: IncrementIFS Increment;
typedef ifs:: LinearModelIFS LinearModel;
typedef oops:: NullModelAux ModelAuxControl;
typedef oops:: NullModelAux ModelAuxIncrement;

typedef ifs:: AllObs ObsOperator;
typedef ifs:: AllObsTraj ObsOperatorLinearizationTrajectory;
typedef oops:: NullObsAux ObsAuxControl;
typedef oops:: NullObsAux ObsAuxIncrement;
typedef ifs:: ObsVector ObsVector;

typedef ifs:: LocationsIFS Locations;
typedef ifs:: GomsIFS ModelAtLocations;

typedef ifs:: LocalizationMatrixIFS LocalizationMatrix;
};

The trait is used as a template argument <MODEL>: compile time polymorphism.

Y. Trémolet OOPS Design November 2013 15 / 34

Run time vs. Compile time polymorphism

The model is chosen at compile time via template instantiation.

#include "mains/RunQg.h"
#include "model/QgTraits.h"
#include "oops/runs/Forecast.h"

int main(int argc , char ** argv) {
qg::RunQg < oops::Forecast <qg::QgTraits > > run(argc , argv);
int info = run.execute ();
return info;

};

ifs::RunIfs < oops::Forecast <ifs::IfsTraits > > run(argc , argv);

The covariance matrices are chosen at run time because some are generic
(Ensemble or hybrid B, diagonal R).

The classes in the trait definition might be abstract base classes (see
QgObservation).

Y. Trémolet OOPS Design November 2013 16 / 34

Source code

Top level scientific code in src/oops/runs

The structure for oops source code is:

/path/to/oops

src

logger

oops

assimilation

base

runs

test

util

l95

qg

. . .

Y. Trémolet OOPS Design November 2013 17 / 34

Forecast class

namespace oops {

template <typename MODEL > class Forecast {
typedef typename MODEL:: Geometry Geometry_;
typedef typename MODEL:: ModelAuxControl ModelAuxCtrl_;
typedef typename MODEL:: ModelConfiguration ModelConfig_;
typedef typename MODEL::State State_;

public:
Forecast () {}
~Forecast () {}
int execute(const util:: Config &)

};

} // namespace oops

The typedefs are aliases to shorter names to avoid repeating the entire
name: typename MODEL::Geometry

MODEL::Geometry would have been nicer but in many places it is not
enough...

The short names are consistent throughout the code (generated by script).

Y. Trémolet OOPS Design November 2013 18 / 34

Forecast class

int execute(const util:: Config & fullConfig) {

// Setup resolution

const util:: Config resolConfig(fullConfig , "resolution");

const Geometry_ resol(resolConfig);

// Setup ModelConfig_

const util:: Config modelConfig(fullConfig , "model");

const ModelConfig_ model(resol , modelConfig);

// Setup initial state

const util:: Config initialConfig(fullConfig , "initial");

LOG(Configs) << "Initial configuration is:\n" << initialConfig;

ModelState <MODEL > xx(model , initialConfig);

LOGS(Info , Test) << "Initial state:" << xx;

// Setup augmented state

ModelAuxCtrl_ moderr(initialConfig);

// Setup times

const util:: Duration fclength(fullConfig.getData("forecast_length"));

const util:: DateTime bgndate(xx.validTime ());

const util:: DateTime enddate(bgndate + fclength);

LOG(Info) << "Running forecast from " << bgndate << " to " << enddate;

// Setup forecast outputs

PostProcessor <State_ > post;

const util:: Config outConfig(fullConfig , "output");

post.enrollProcessor(new StateWriter <State_ >(bgndate , outConfig));

// Run forecast

xx.forecast(moderr , fclength , post);

LOGS(Info , Test) << "Final state:" << xx;

return 0;

}

Y. Trémolet OOPS Design November 2013 19 / 34

A simple class: Geometry (L95)

class Resolution {
public:
explicit Resolution(const util:: Config & conf): resol_(conf.getInt("resol")) {}
Resolution(const Resolution & other): resol_(other.resol_) {}
~Resolution () {}

int toFortran () const {return resol_ ;}

friend std:: ostream & operator << (std:: ostream &, const Resolution &);

private:
const int resol_;

};

OOPS expects very little from such a class.

Some method are specific and not used by OOPS (toFortran).

Y. Trémolet OOPS Design November 2013 20 / 34

Increment (L95)

class IncrementL95: public FieldL95 , public oops:: GeneralizedDepartures ,
private util:: ObjectCounter <IncrementL95 > {

public:
static const std:: string classname () {return "lorenz95 :: IncrementL95";}

/// Constructor , destructor
IncrementL95(const Resolution &, const oops:: Variables &, const util:: DateTime &);
IncrementL95(const IncrementL95 &, const Resolution &);
IncrementL95(const IncrementL95 &, const bool copy = true);
virtual ~IncrementL95 ();

/// Basic operators
void diff(const StateL95 &, const StateL95 &);
IncrementL95 & operator =(const IncrementL95 &);
IncrementL95 & operator +=(const IncrementL95 &);
IncrementL95 & operator -=(const IncrementL95 &);
IncrementL95 & operator *=(const double &);
void zero ();
void axpy(const double &, const IncrementL95 &, const bool check = true);
double dot_product_with(const IncrementL95 &) const;
void schur_product_with(const IncrementL95 &);
void timeUpdate(const util:: Duration &);

The compiler will check the types of the arguments during template
instantiation. Run-time polymorphism would require downcasting.

Y. Trémolet OOPS Design November 2013 21 / 34

Increment (L95)

class IncrementL95: public FieldL95 , public oops:: GeneralizedDepartures ,
private util:: ObjectCounter <IncrementL95 > {

public:

/// Interpolate to observation location
void interpolateTL(const LocsL95 &, GomL95 &) const;
void interpolateAD(const LocsL95 &, const GomL95 &);

/// Access to data ... Could we do without that?
FieldF90 ** getFields () {return FieldL95 :: toFortran ();}
const FieldF90 * const * getFields () const {return FieldL95 :: toFortran ();}

protected:
void initTL(const TLML95 &);
void initAD(const TLML95 &);
void stepTL(const TLML95 &, const ModelError &);
void stepAD(const TLML95 &, ModelError &);

void accumul(const double & zz, const StateL95 & xx);
};

States are similar but without the linear algebra.

States and Increments are used by OOPS directly.

OOPS also adds functionality by defining sub-classes (decorator).

Y. Trémolet OOPS Design November 2013 22 / 34

ModelState and ModelIncrement

template <typename MODEL > class ModelState: public MODEL ::State ,
private util:: ObjectCounter <ModelState <MODEL > >

{
typedef typename MODEL:: ModelAuxControl ModelAuxCtrl_;
typedef typename MODEL:: ModelConfiguration ModelConfig_;
typedef typename MODEL::State State_;

public:
ModelState(const ModelConfig_ &, const util:: Config &);
ModelState(const State_ &, const ModelConfig_ &);
~ModelState ();

/// Run a forecast
void forecast(const ModelAuxCtrl_ &, const util:: Duration &,

PostProcessor <State_ > &);

static const std:: string classname () {return "ModelState";}

private:
const ModelConfig_ & model_;

};

It is a templated class, the template argument is a model trait.

Note the reference to a ModelConfig object.

Y. Trémolet OOPS Design November 2013 23 / 34

ModelState and ModelIncrement

template <typename MODEL >

void ModelState <MODEL >:: forecast(const ModelAuxCtrl_ & mctl , const util:: Duration & len ,

PostProcessor <State_ > & post) {

const util:: DateTime end(validTime () + len);

LOG(Info) << "ModelState:forecast: Starting forecast , time is " << validTime ();

LOG(Info) << "Start NL" << *this;

post.initialize(validTime(), end , model_.timestep ());

this ->init(model_);

post.process (*this);

while (validTime () < end) {

this ->step(model_ , mctl);

post.process (*this);

}

ASSERT(validTime () == end);

post.finalize ();

LOG(Info) << "ModelState:forecast: Finished forecast , time is " << validTime ();

LOG(Info) << "End NL" << *this;

}

forecast calls the PostProcessors at each time step (Observer pattern).

PostProcessors are very generic: I/O, FullPos, print information...

It is the responsibility of the PostProcessors to know when and what actions
are needed, not of the model.

The responsibility of the model (step) is to move the state in time, nothing
else.

Y. Trémolet OOPS Design November 2013 24 / 34

Observations

template <typename MODEL > class Observations {

public:

Observations(const util:: Config &, const util:: DateTime &, const util:: DateTime &);

Observations(const Observations &, const bool copyObs = true);

~Observations ();

Observations & operator =(const Observations &);

/// Interactions with Departures

Departures_ * newDepartures(const std:: string & name = "") const;

Departures_ operator -(const Observations & other) const;

Observations & operator +=(const Departures_ &);

/// Get GOM

GOM_ * newGOM(const util:: DateTime &, const util:: DateTime &) const;

/// Get observations locations

ObsLocations_ * locations(const util:: DateTime &, const util:: DateTime &) const;

/// Get observation operator trajectory

ObsOpTraj_ * newObsTraj () const;

/// Compute observations equivalents

void runObsOperator(const GOM_ &, const ObsAuxCtrl_ &);

void runObsOperator(const GOM_ &, const ObsAuxCtrl_ &, ObsOpTraj_ &);

/// Save observations values

void save(const std:: string &) const;

/// Print human readable observations informations

friend std:: ostream & operator << <> (std:: ostream &, const Observations &);

Y. Trémolet OOPS Design November 2013 25 / 34

Observations

template <typename MODEL > class Observations {
public:

// continued ...

/// Generate observation distribution
void generateDistribution(const util:: Config &);

/// Start of assimilation window
const util:: DateTime & windowStart () const {return winbgn_ ;}

/// End of assimilation window
const util:: DateTime & windowEnd () const {return winend_ ;}

/// Double despatch for obs error covariance methods
ObsErrorBase_ * helpCovarCreate(const util:: Config & conf) const;
void helpCovarLinearize(ObsErrorBase_ & R) const {R.linearize (*obs_);}

private:
boost:: shared_ptr <ObsOperator_ > oper_;
boost:: scoped_ptr <ObsVector_ > obs_;
const util:: DateTime winbgn_;
const util:: DateTime winend_;

};

The double despatch is a technique to preserve the encapsulation.

The smart pointers take care of the memory mangement for us.

Y. Trémolet OOPS Design November 2013 26 / 34

State-Observations Interactions

Two classes make the link between the model and observation spaces:
I Locations
I ModelAtLocations

The computation of observations equivalents is done in a PostProcessor:

1. Ask the Observations for a list of locations where there are observations (at
the current time)

2. Ask the State for the model values at these locations
3. Ask the ObsOperator to compute the observations equivalents given the model

values at observations locations.

Last step can be performed on the fly or in the finalize method (memory vs.
load balancing).

The traits ensure the arguments types are compatible. There is no magic
interpolation from any grid to any location in OOPS.

Preserves encapsulation (model grid not visible in observation operator).

But it’s up to each model implementation: OOPS does not prevent copying
the full State in the GOM...

Y. Trémolet OOPS Design November 2013 27 / 34

State-Observations Interactions

Two classes make the link between the model and observation spaces:
I Locations
I ModelAtLocations

The computation of observations equivalents is done in a PostProcessor:

1. Ask the Observations for a list of locations where there are observations (at
the current time)

2. Ask the State for the model values at these locations
3. Ask the ObsOperator to compute the observations equivalents given the model

values at observations locations.

Last step can be performed on the fly or in the finalize method (memory vs.
load balancing).

The traits ensure the arguments types are compatible. There is no magic
interpolation from any grid to any location in OOPS.

Preserves encapsulation (model grid not visible in observation operator).

But it’s up to each model implementation: OOPS does not prevent copying
the full State in the GOM...

Y. Trémolet OOPS Design November 2013 27 / 34

State-Observations Interactions

Two classes make the link between the model and observation spaces:
I Locations
I ModelAtLocations

The computation of observations equivalents is done in a PostProcessor:

1. Ask the Observations for a list of locations where there are observations (at
the current time)

2. Ask the State for the model values at these locations
3. Ask the ObsOperator to compute the observations equivalents given the model

values at observations locations.

Last step can be performed on the fly or in the finalize method (memory vs.
load balancing).

The traits ensure the arguments types are compatible. There is no magic
interpolation from any grid to any location in OOPS.

Preserves encapsulation (model grid not visible in observation operator).

But it’s up to each model implementation: OOPS does not prevent copying
the full State in the GOM...

Y. Trémolet OOPS Design November 2013 27 / 34

Outline

1 The IFS

2 OOPS Design: Abstract Level

3 Implementing the Abstract Design: Building Blocks

4 Implementing the Abstract Design: Applications

5 Some General Comments

Y. Trémolet OOPS Design November 2013

Cost Function Design

Naive approach:
I One object for each term of the cost function.
I Compute each term (or gradient) and add them together.
I Problem: The model is run several times (Jo , Jc , Jq)

Another naive approach:
I Run the model once and store the full 4D state.
I Compute each term (or gradient) and add them together.
I Problem: The full 4D state is too big (for us).

A feasible approach:
I Run the model once.
I Compute each term (or gradient) on the fly while the model is running.
I Add all the terms together.

Y. Trémolet OOPS Design November 2013 28 / 34

Cost Function Design

Naive approach:
I One object for each term of the cost function.
I Compute each term (or gradient) and add them together.
I Problem: The model is run several times (Jo , Jc , Jq)

Another naive approach:
I Run the model once and store the full 4D state.
I Compute each term (or gradient) and add them together.
I Problem: The full 4D state is too big (for us).

A feasible approach:
I Run the model once.
I Compute each term (or gradient) on the fly while the model is running.
I Add all the terms together.

Y. Trémolet OOPS Design November 2013 28 / 34

Cost Function Design

Naive approach:
I One object for each term of the cost function.
I Compute each term (or gradient) and add them together.
I Problem: The model is run several times (Jo , Jc , Jq)

Another naive approach:
I Run the model once and store the full 4D state.
I Compute each term (or gradient) and add them together.
I Problem: The full 4D state is too big (for us).

A feasible approach:
I Run the model once.
I Compute each term (or gradient) on the fly while the model is running.
I Add all the terms together.

Y. Trémolet OOPS Design November 2013 28 / 34

Cost Function Implementation

One class for each term (more flexible).

Call a method on each object on the fly while the model is running.
I Uses the PostProcessor structure already in place (observer pattern).
I Finalize each term and add the terms together at the end.

The terms can be re-used (or not) for various formulations (3D-Var, 4D-Var,
weak constraint, 4D-Ens-Var...).

Each formulation derives from an abstract CostFunction base class.
I Code duplication between strong and weak constraint 4D-Var: use in the same

derived class (weak constraint) or write the weak constraint 4D-Var as a sum
of strong constraint terms for each sub-window.

I It was decided to keep 3D-Var and 4D-Var for readability reasons.
I The choice of cost function is made at run time via a factory.

Y. Trémolet OOPS Design November 2013 29 / 34

Cost Function Base Class

template <typename MODEL > class CostFunction : private boost :: noncopyable {

public:

explicit CostFunction(const ModelConfig_ &);

virtual ~CostFunction () {}

double evaluate(const CtrlVar_ &, const util:: Config &, PostProcessor <State_ > &) const;

double linearize(const CtrlVar_ &, const util:: Config &, PostProcessor <State_ > &);

virtual void runTLM(CtrlInc_ &,

PostProcessor <Increment_ >&, PostProcessorTL <Increment_ >&) const =0;

virtual void runADJ(CtrlInc_ &,

PostProcessor <Increment_ >&, PostProcessorAD <Increment_ >&) const =0;

void addIncrement(CtrlVar_ &, const CtrlInc_ &,

PostProcessor <Increment_ > post = PostProcessor <Increment_ >()) const;

void resetLinearization ();

/// Access to Jb and other terms of the cost function

const CostJbBase <MODEL > & jb() const {return *jb_;}

const CostBase_ & jterm(const unsigned ii) const {return jterms_[ii];}

/// Cost function gradient at first guess.

CtrlInc_ getGradientFG () const;

private:

virtual void runNL(CtrlVar_ &, PostProcessor <State_ >&) const =0;

// Data members

const ModelConfig_ & model_;

boost:: scoped_ptr <CostJbBase <MODEL > > jb_;

boost:: ptr_vector <CostBase_ > jterms_;

boost:: ptr_vector <LinearModel_ > tlm_;

};

A few methods have been removed for the presentation.

Y. Trémolet OOPS Design November 2013 30 / 34

Cost Function Base Class

template <typename MODEL >
double CostFunction <MODEL >:: evaluate(const CtrlVar_ & fguess ,

const util:: Config & config ,
PostProcessor <State_ > & post) const {

// Setup terms of cost function
PostProcessor <State_ > pp(post);
for (unsigned jj = 0; jj < jterms_.size (); ++jj) {

pp.enrollProcessor(jterms_[jj]. initialize(fguess));
}

// Run NL model
CtrlVar_ xx(fguess);
this ->runNL(xx, pp);

// Cost function value
const util:: Config diagnostic(config , "diagnostics", true);
double zzz = jb_ ->evaluate(fguess , xx);
for (unsigned jj = 0; jj < jterms_.size (); ++jj) {

zzz += jterms_[jj]. finalize(diagnostic);
}
LOGS(Info , Test) << "CostFunction: Nonlinear J = " << zzz;
return zzz;

}

Saving the model linearization trajectory is also the responsibility of a
PostProcessor.
Only Jb has a special role.

Y. Trémolet OOPS Design November 2013 31 / 34

4D-Var Cost Function

template <typename MODEL > class CostFct4DVar : public CostFunction <MODEL > {
public:
CostFct4DVar(const util:: Config &, const ModelConfig_ &);
~CostFct4DVar () {}

void runTLM(CtrlInc_ &,
PostProcessor <Increment_ >&, PostProcessorTL <Increment_ >&) const;

void runADJ(CtrlInc_ &,
PostProcessor <Increment_ >&, PostProcessorAD <Increment_ >&) const;

private:
void runNL(CtrlVar_ &, PostProcessor <State_ >&) const;
void addIncr(CtrlVar_ &, const CtrlInc_ &, PostProcessor <Increment_ >&) const;

CostJb <MODEL > * newJb(const util:: Config &, const Geometry_ &) const;
CostJo <MODEL > * newJo(const util:: Config &) const;
CostTermBase <MODEL > * newJc(const util:: Config &, const Geometry_ &) const;

util:: Duration windowLength_;
util:: DateTime windowBegin_;
util:: DateTime windowEnd_;

};

Specific implementations of abstract methods from the base class.

Y. Trémolet OOPS Design November 2013 32 / 34

Using the Cost Function

The cost function is created by a factory according to the configuration
(src/oops/runs/Variational.h)

// Setup cost function
const util:: Config cfConf(fullConfig , "cost_function");
boost:: scoped_ptr < CostFunction <MODEL > >

J(CostFactory <MODEL >:: create(cfConf , model));

I A smart pointer is used to take ownership of the pointer returned by the
factory...

I because the factory cannot return a reference.

It is very easy to add new cost function implementations.

4D-Ens-Var was added in a few hours.
I OO is not magic and will not solve scientific questions by itself.
I Scientific questions (localization) remain but scientific work can start.
I Weeks of work would have been necessary in the IFS.

Y. Trémolet OOPS Design November 2013 33 / 34

Outline

1 The IFS

2 OOPS Design: Abstract Level

3 Implementing the Abstract Design: Building Blocks

4 Implementing the Abstract Design: Applications

5 Some General Comments

Y. Trémolet OOPS Design November 2013

General Comments about OO Design

Who owns each object?

Who has responsibility for a given piece of information? For a given action?

One class == one responsibility
I Don’t do too much but do it well.
I Focus on one problem at a time.
I Compose classes for more complex tasks.

Use of smart pointers:
I When possible use a reference,
I If a reference won’t do, try a scoped pointer,
I If a scoped pointer doesn’t work, try a shared pointer,
I If a shared pointer doesn’t work, try an auto (or unique) pointer,
I Only if all else fails use a plain pointer (risk of memory leak, lacks information

about the intent of the design).

Y. Trémolet OOPS Design November 2013 34 / 34

