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Context and objectives

» Objective: Understanding and predicting Antarctic sea ice variability at the
decadal timescale

» Many gaps in our knowledge of the processes that rule the variability of the sea
ice extent in the Southern Ocean are still remaining

» Such as the recent positive trend in sea ice extent in a global warming context

» Our contribution: development of a data assimilative global model system cou-
pled to a sea ice model



Model and state vector

» NEMO-LIM with 2° resolution (global) and 31 z-levels
» Based on NEMO and LIM restart files

» Hydrodynamical variables:

u-velocity

e v-velocity

e temperature

e salinity

e surface elevation

e rotational of horizontal velocity components
e divergence of horizontal velocity components
e turbulent kinetic energy

» Leap-frog time stepping (two time instances: *b and *n) and time averaged
surface values (ss*m)



» Sea ice variables:

e sea ice fraction (transformed variable with Gaussian anamorphosis)

Ice thickness

Snow thickness

Temperature inside the ice/snow layer

u-ice velocity

v-ice velocity

e Energy stored in the brine pockets
» in total 32 different variables and 6 million elements.

» to be determined: if the assimilation increment of all variables has a positive
impact

» Sea ice Surface Temperature (sist) was removed from state vector



Assimilated Observations

» Global sea surface temperature (OSTIA, reduced to 2° resolution)

e Error standard deviation is the average of the error standard deviation of
the original OSTIA SST

e var(e; +&y) = var(ey) + var(ez) + 2 cov(ey, £2)

e if £1 and ey are independent: var(e; + €5) = var(e;) + var(esy)

e if £1 and &y are perfectly correlated: std(eq + €2) = std(e1) + std(es)

» Global sea ice fraction (OSTIA/OSI-SAF, reduced to 2° resolution), error stan-
dard deviation for assimilation is assumed to be 0.1

» Satellite-based sea ice drift (for southern hemisphere only), error standard devi-
ation for assimilation is assumed to be 0.1 m/s

» Error standard deviation needs to be fine-tuned



Data Assimilation algorithm

» The “best’ estimator of the model
state vector x%:

X = xf—l—K(yO—fo) n
K = P/H'(HP/H'+R) ',
P* = P/ - KHP/ pf/a
Sf/a
» Decompositions of P/ in square root | y°
matrices S/ (n x r): R
H
P/ = stfT U
A

number of state variables

number of ensemble members

the model forecast/analysis

error covariance of x//¢

square root decomposition of P//¢
observations

error covariance of y°

observation operator

eigenvectors

eigenvalues

» Only effective if r is small (r << n).

» We assume that R is diagonal.




Data Assimilation algorithm
In practice, the following eigenvalue decomposition is made:

(HS)" R'HS/ = UAU” (1)

where UTU = I and where A is diagonal. U and A are both of size 7 x 7. The
Kalman gain K and S® can be computed by:

K = S'U1+A)'UTHSHTR™ (2)
s = sfu@a+ AUt (3)
S® is the square root of P“:
Pa — SasaT (4)
Based on x® and S¢, an ensemble can be reconstructed:

x¢® = x4 fr— 182" (5)



Ocean Assimilation Kit (OAK)

» Reduced rank square root analysis

» Global and local algorithm

» Modular Fortran 90 program

» Flexible definition of state vector

» Supports arbitrary curvilinear grid

» Local algorithm parallelized with OpenMP and MPI
» NetCDF or Fortran binary files as input

» Released as open-source (more info tinyurl.com/assim-ocean or
modb.oce.ulg.ac.be/OAK)


http://tinyurl.com/assim-ocean
http://modb.oce.ulg.ac.be/OAK

Gaussian anamorphosis

» the analysis is the most likely state if errors are Gaussian-distributed

» however some variables are clearly not Gaussian-distributed: e.g. sea ice concen-
tration (between 0 and 1)

» apply non-linear transformation

e an analytical transformation (e.g. log, for lognormal distributions)

e empirical transformation (based on cumulative distribution function, cdf)
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Covariance localization
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» Assimilation increment for temperature for a point observation (magenta dot).
Maximum length-scale is 2000 km (about 20 grid points)

» Model domain extends from -280 E to 80 E.

» Localization needs to take the cyclic boundary condition into account



Model run
» Ensemble spin-up:

e Start time: 1984-01-01
e Followed by a one-year ensemble spin-up
e All members start with the same initial condition

e Every member is run with perturbed atmospheric forcings (wind and air
temperature)

» Assimilative run:

e First observations assimilated: 1985-01-01

Observations are assimilated every 5 days (if available)

50 ensemble members

e Again perturbed wind and air temperature
1 year — 28 hours CPU time on 50 Xeon E5649 CPUs (lemaitre2)



First assimilation cycle

Sea surface temperature

temp1985 01 01T000000 ensemblespread » Relatively large ensemble
b 0 ey > 2 spread at first assimilation
cycle.

» Qualitative agreement be-

0 tween ensemble spread and
difference between forecast

5 and observations
» Larger errors in Gulf Stream
1 and Kuroshio region, but no
0 ensemble spread — only very

small correction.



Ice concentration

icec 1985 01 01T00 00:00

ensemble spread

04
02

04
02

Areas with large ensemble
spread (near ice edge) agree
well with region with high er-
ror

Uncertainty of sea ice con-
centration seems to be easier
to predict than uncertainty
in sea surface temperature



RMS temporal evolution

RMS temp
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RMS difference between
model run and observa-
tions stabilizes after a few
assimilation cycles.

“Forecast” and “Analysis”
refer to the corresponding
ensemble mean.

SST, Ice concentration
RMS is averaged over the
entire globe.

Ice drift is averaged over
the area where observa-
tions are available (i.e. ice-
covered areas).



Error statistics averaged over time

Sea surface temperature

SST (free rms) SST (forecast stddevHx)

2

» RMS = averaged
s over the year

» stddevHx = square
0s root of the aver-
aged ensemble vari-
ance of the model
forecast

» Freerun: large error

near boundary cur-

- rents and equatorial
region

» Qualitative agreement of ensemble spread

» Of course, RMS difference between model and observations is reduced during
the analysis



Ice concentration

Ice conc. (forecast stddevHx)

> Relatively good agreement between ensemble spread of forecast and actual RMS
difference between forecast and observations

» RMS difference includes also the observation error:

E[Hx! —y°)(Hx! —y°)"] =HP/H+R



Zonal ice-drift

Ice motion e(free rms)

ots Mean iceodrift 1985

180°W. 180°W

Ice motion x orecast rms) Ice motion x ganalysis rms)

Mean ice drift from the
model analysis

» Low model RMS differences in Weddell and Ross Sea correspond well to the
ensemble spread.

» In these areas, ice-drift is directed off-shore.

» Higher ensemble-spread in open ocean, in agreement with RMS difference



Meridional ice-drift

Ice motion p(iree rms)
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Validation with world

Temperature RMS

ocean data base

Temperature bias
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All profile data in World
Ocean Database (obser-
vations are interpolated
vertically to model grid)

Temperature presents a
quite large error in free
model run near the sur-
face.

Data are often in dynamic
regions and average might
not be representative.

RMS and bias reduced
compared to this indepen-
dent data set.



Data distribution

180°W 120°W 60°W  0°  60°E 120°E 180°W
» Data distribution of World Ocean Database for year 1985

» Very inhomogeneous distribution

» Average over complete data-set is biased towards the Northern Hemisphere



Validation with World Ocean Database south of 60°S

Temperature RMS Temperature bias
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» RMS difference between model and observations is dominated by the bias (ob-
servation - model)
» In general, model too warm

» RMS and bias reduced also south of 60°S, but less than in Northern Hemisphere.



Conclusions

» First model run of a complete year (~ 30 more to go).
» Start with 1985 since begin of OSTIA time series.

» Ensemble spread is often too small, but structure agrees with the RMS difference
of model and observations.

» Improvement of model during analysis persists over the next assimilation cycle.

» Assimilative run reduces error also compared to independent data set (in situ
profiles).

e Significant improvement in temperature

e Also improvement in salinity



Educational tools

Data Assimilation Demo

This web-page aims to demonstrate the Kalman Filter with some simple linear toy models. First choose model and data assimilation parameters and then click on "Run assimilation”
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http://www.data-assimilation.net/Tools/


http://www.data-assimilation.net/Tools/

DIVA demo ...

—‘ Reference field

Field| simple random field v
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—{ Location of observations }

Your name:
Correlation Iength-scale:|

Choose the location of your observation (maximum 10)

# x y

114.894 77.030 [x]
6 77.508 79.758 [x]
747.416 87.030 [x]

| Make analysis | | Remove all |

Name RMS
JMB  0.2488601797
Ngu  0.2734995952
charles 0.3043944967
it 0.3377809227
Aida  0.3539947015

http://data-assimilation.net/Tools/



http://data-assimilation.net/Tools/

Zonal ice drift
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» Strong zonal ice-drift near Ross Sea, not reproduced by the model

» Not good match for ensemble spread and model forecast-observation difference

» Error reduction but relatively small



Meridional ice drift
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» Surprisingly small error of meridional ice-drift

» Essentially no correction by assimilation



