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Context and objectives

I Objective: Understanding and predicting Antarctic sea ice variability at the
decadal timescale

I Many gaps in our knowledge of the processes that rule the variability of the sea
ice extent in the Southern Ocean are still remaining

I Such as the recent positive trend in sea ice extent in a global warming context

I Our contribution: development of a data assimilative global model system cou-
pled to a sea ice model



Model and state vector

I NEMO-LIM with 2◦ resolution (global) and 31 z-levels

I Based on NEMO and LIM restart files

I Hydrodynamical variables:

• u-velocity

• v-velocity

• temperature

• salinity

• surface elevation

• rotational of horizontal velocity components

• divergence of horizontal velocity components

• turbulent kinetic energy

I Leap-frog time stepping (two time instances: *b and *n) and time averaged
surface values (ss*m)



I Sea ice variables:

• sea ice fraction (transformed variable with Gaussian anamorphosis)

• Ice thickness

• Snow thickness

• Temperature inside the ice/snow layer

• u-ice velocity

• v-ice velocity

• Energy stored in the brine pockets

I in total 32 different variables and 6 million elements.

I to be determined: if the assimilation increment of all variables has a positive
impact

I Sea ice Surface Temperature (sist) was removed from state vector



Assimilated Observations

I Global sea surface temperature (OSTIA, reduced to 2◦ resolution)

• Error standard deviation is the average of the error standard deviation of
the original OSTIA SST

• var(ε1 + ε2) = var(ε1) + var(ε2) + 2 cov(ε1, ε2)

• if ε1 and ε2 are independent: var(ε1 + ε2) = var(ε1) + var(ε2)

• if ε1 and ε2 are perfectly correlated: std(ε1 + ε2) = std(ε1) + std(ε2)

I Global sea ice fraction (OSTIA/OSI-SAF, reduced to 2◦ resolution), error stan-
dard deviation for assimilation is assumed to be 0.1

I Satellite-based sea ice drift (for southern hemisphere only), error standard devi-
ation for assimilation is assumed to be 0.1 m/s

I Error standard deviation needs to be fine-tuned



Data Assimilation algorithm

I The “best” estimator of the model
state vector xa:

xa = xf + K
(
yo −Hxf

)
K = PfHT

(
HPfHT + R

)−1

Pa = Pf −KHPf

I Decompositions of Pf in square root
matrices Sf (n× r):

Pf = SfSf T

I Only effective if r is small (r << n).

I We assume that R is diagonal.

n number of state variables
r number of ensemble members
xf/a the model forecast/analysis
Pf/a error covariance of xf/a

Sf/a square root decomposition of Pf/a

yo observations
R error covariance of yo

H observation operator
U eigenvectors
Λ eigenvalues



Data Assimilation algorithm

In practice, the following eigenvalue decomposition is made:(
HSf

)T
R−1HSf = UΛUT (1)

where UTU = I and where Λ is diagonal. U and Λ are both of size r × r. The
Kalman gain K and Sa can be computed by:

K = SfU(1 + Λ)−1UT (HSf )TR−1 (2)

Sa = SfU(1 + Λ)−1/2UT (3)

Sa is the square root of Pa:

Pa = SaSaT (4)

Based on xa and Sa, an ensemble can be reconstructed:

xa(k) = xa +
√
r − 1 Sa(k) (5)



Ocean Assimilation Kit (OAK)

I Reduced rank square root analysis

I Global and local algorithm

I Modular Fortran 90 program

I Flexible definition of state vector

I Supports arbitrary curvilinear grid

I Local algorithm parallelized with OpenMP and MPI

I NetCDF or Fortran binary files as input

I Released as open-source (more info tinyurl.com/assim-ocean or
modb.oce.ulg.ac.be/OAK)

http://tinyurl.com/assim-ocean
http://modb.oce.ulg.ac.be/OAK


Gaussian anamorphosis

I the analysis is the most likely state if errors are Gaussian-distributed

I however some variables are clearly not Gaussian-distributed: e.g. sea ice concen-
tration (between 0 and 1)

I apply non-linear transformation

• an analytical transformation (e.g. log, for lognormal distributions)

• empirical transformation (based on cumulative distribution function, cdf)
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Covariance localization
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I Assimilation increment for temperature for a point observation (magenta dot).
Maximum length-scale is 2000 km (about 20 grid points)

I Model domain extends from -280 E to 80 E.

I Localization needs to take the cyclic boundary condition into account



Model run

I Ensemble spin-up:

• Start time: 1984-01-01

• Followed by a one-year ensemble spin-up

• All members start with the same initial condition

• Every member is run with perturbed atmospheric forcings (wind and air
temperature)

I Assimilative run:

• First observations assimilated: 1985-01-01

• Observations are assimilated every 5 days (if available)

• 50 ensemble members

• Again perturbed wind and air temperature

• 1 year → 28 hours CPU time on 50 Xeon E5649 CPUs (lemaitre2)



First assimilation cycle

Sea surface temperature

I Relatively large ensemble
spread at first assimilation
cycle.

I Qualitative agreement be-
tween ensemble spread and
difference between forecast
and observations

I Larger errors in Gulf Stream
and Kuroshio region, but no
ensemble spread→ only very
small correction.



Ice concentration

I Areas with large ensemble
spread (near ice edge) agree
well with region with high er-
ror

I Uncertainty of sea ice con-
centration seems to be easier
to predict than uncertainty
in sea surface temperature



RMS temporal evolution
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I RMS difference between
model run and observa-
tions stabilizes after a few
assimilation cycles.

I “Forecast” and “Analysis”
refer to the corresponding
ensemble mean.

I SST, Ice concentration
RMS is averaged over the
entire globe.

I Ice drift is averaged over
the area where observa-
tions are available (i.e. ice-
covered areas).



Error statistics averaged over time

Sea surface temperature
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I RMS = averaged
over the year

I stddevHx = square
root of the aver-
aged ensemble vari-
ance of the model
forecast

I Free run: large error
near boundary cur-
rents and equatorial
region

I Qualitative agreement of ensemble spread

I Of course, RMS difference between model and observations is reduced during
the analysis



Ice concentration
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I Relatively good agreement between ensemble spread of forecast and actual RMS
difference between forecast and observations

I RMS difference includes also the observation error:

E
[
(Hxf − yo)(Hxf − yo)T

]
= HPfH + R



Zonal ice-drift
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Mean ice drift 1985

Mean ice drift from the
model analysis

I Low model RMS differences in Weddell and Ross Sea correspond well to the
ensemble spread.

I In these areas, ice-drift is directed off-shore.

I Higher ensemble-spread in open ocean, in agreement with RMS difference



Meridional ice-drift
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Mean ice drift 1985



Validation with world ocean data base
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I All profile data in World
Ocean Database (obser-
vations are interpolated
vertically to model grid)

I Temperature presents a
quite large error in free
model run near the sur-
face.

I Data are often in dynamic
regions and average might
not be representative.

I RMS and bias reduced
compared to this indepen-
dent data set.



Data distribution
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I Data distribution of World Ocean Database for year 1985

I Very inhomogeneous distribution

I Average over complete data-set is biased towards the Northern Hemisphere



Validation with World Ocean Database south of 60◦S
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I RMS difference between model and observations is dominated by the bias (ob-
servation - model)

I In general, model too warm

I RMS and bias reduced also south of 60◦S, but less than in Northern Hemisphere.



Conclusions

I First model run of a complete year (∼ 30 more to go).

I Start with 1985 since begin of OSTIA time series.

I Ensemble spread is often too small, but structure agrees with the RMS difference
of model and observations.

I Improvement of model during analysis persists over the next assimilation cycle.

I Assimilative run reduces error also compared to independent data set (in situ
profiles).

• Significant improvement in temperature

• Also improvement in salinity



Educational tools

http://www.data-assimilation.net/Tools/

http://www.data-assimilation.net/Tools/


http://data-assimilation.net/Tools/

http://data-assimilation.net/Tools/


Zonal ice drift
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Ice drift 1985−01−01

Observed ice-drift 1985-01-01

I Strong zonal ice-drift near Ross Sea, not reproduced by the model

I Not good match for ensemble spread and model forecast-observation difference

I Error reduction but relatively small



Meridional ice drift
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Ice drift 1985−01−01

Observed ice-drift 1985-01-01

I Surprisingly small error of meridional ice-drift

I Essentially no correction by assimilation


