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Ensemble context

SANGOMA purposes :

Development of advanced stochastic assimilation methods dealing
with strongly non-linear and non-gaussian phenomena.

Provide an uncertainty estimation associated with the analysis
process.

Full ensemble analysis schemes :

Evolution in time of the covariance errors.

Consider the ensemble (PDF) as a whole
→ probabilistic validation.
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Beyond the deterministic validation ...

RMS Error :

RMSE2 = E [(o −m)2]

Deterministic score -negatively oriented- using the ensemble mean
as the ensemble estimator.

1st approximation of the ensemble quality ...

Spread Reduction Factor (SRF, Sakov et al 2012) :

SRF=
(

tr(HPf HTR−1)
tr(HPaHTR−1)

) 1
2
− 1

SRF=0 → no change, SRF=1 → uncertainty reduction by 2.

1st approximation of the uncertainty reduction ...
but no information about the consistency with the real errors.
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How to evaluate an ensemble ?

‘Forget’ the deterministic concepts of validation.

X
o

Ensemble validation by statistical accumulation.
(→ the ensemble system is highly reproducible)

Probabilistic criteria :

reliability, statistical consistency.
resolution or sharpness, statistical variability.
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Reliability

Statistical consistency between the produced ensembles and the
corresponding verifications.

X
o

Produced PDF f .

f ′1 and f ′2 : 2
distributions of xo when
f is produced.

A system is perfectly
reliable if and only if
f = f ′ for all f .
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Resolution

Ability of the ensemble system to separate the produced PDF
leading to sufficiently distinct corresponding observed distributions
(COD).

COD examples
from a minimal
resolution (null)
for a
climatological
system to a
maximal
resolution for a
perfect
deterministic
system.

(nb : the curve represents the climatological distribution)
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Probabilistic criteria : summary

Reliability and resolution are 2 independent properties,
necessary and sufficient in order to evaluate the intrinsic
quality and the usefulness of an ensemble system.

First, an ensemble system must be reliable, but also must be
able to a priori separate the produced PDF into sufficiently
various classes so the corresponding observations represent
sufficiently distinct situations.



emptyContext Validation Scores Benchmarks

Outline

1 Motivation & context

2 Probabilistic validation

3 Probabilistic scores (univariate)

4 Model benchmarks & metrics



emptyContext Validation Scores Benchmarks

Reliability scores

Ensemble −→ N independent realizations from a PDF.

Reliability : statistical consistency between the produced
ensembles and the observed verifications.
−→ Is the verification a N+1-st realizations of the PDF
defined by the N members of the ensemble ?

Scores :
Rank histogram.
Reduced Centered Random Variable (RCRV).
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Rank histogram

Partial order between the N members of the ensemble and the
verification.

X1  X2        X3     ......................................     X(n−1)  Xn

Vérification

=⇒

The verification is statistically indistinguishable from the N
ensemble values −→ equally distributed over the N+1 intervals.

The rank histogram flatness is a measure of the ensemble reliability.

Deviation from the flatness : δ = N+1
MN

∑M
k=1

(
sk − M

N+1

)2
.

Reliable system : δ = 1.
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Reduced Centered Random Variable (RCRV)

Are the ensemble members and the verification indistinguishable ?

Decompose the reliability into bias (b) and dispersion (d).

RCRV :
y =

o −m
σ

b = E [y ] measures the weighted bias of the system.
d2 = E [y2]− b2 measures the agreement between the
ensemble spread and the analysis error of the ensemble mean.
Reliable system : b = 0 and d = 1.

Remarks :

Observational error can be intruduced : σ =
√

σ2
e + σ2

o .
RMSE2 ≈ E [σ2](d2 + b2)
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How to improve the ensemble system reliability ?

Non-reliable ensemble system ...

and 2 conceivable corrections.

d ≡ Var
(

ε
σ

)
> 1

ε

verification

ensemble mean

members

σ

increase the spread

ε

verification

ensemble mean

members

σ

reduce mean the error

σ

members

ensemble mean

verification

ε
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Continuous Ranked Probability Score (CRPS)

CRPS measures the global quality of an ensemble system :

CRPS = E
[∫

Ω

(Fp(ξ)− H(ξ − xo))2 dξ

]
Fp is the cumulative density function (CDF) associated with the
produced ensemble.

continuous case (theory) discrete case (reality)

σ

1

0

verification

mean

CRPS

CDF

ε

ξ

σ

1

0

verification

mean

CRPS

ε

CDF

ξ

Decomposition (Hersbach 2000) : CRPS = Reli + CRPSpot .



emptyContext Validation Scores Benchmarks

Reli

Coefficients are defined for
each [xi , xi+1] depending on
the verification position and
the interval size.

1

0 X1 X2 X(n−1) Xn.......

verification

CDF

=⇒

Build the COD and compare
to the mean of the CDF
produced by the system.

1

0

observed

predicted 

Reli
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CRPSpot

CRPSpot is the potential value of the CRPS when the ensemble
system is reliable, i.e. Reli = 0.

CRPSpot = uncertainty - resolution

CRPSpot ∝ F(σ)

uncertainty ∝ F(Σ)

resolution ∝ F(Σ− σ)

The more σ << Σ, better the resolution is.
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Summary of the probabilistic tools

CRPS = E
[∫

Ω
(Fp(ξ)− Fo(ξ))2 dξ

]
(global score)

CRPSpot
(resolution)

Reli ≡ y = o−m
σ ≈ rank histogram

(reliability)

bias : b = E [y ]

dispersion : d2 = E [y2]− b2©©©*

H
HHj

©©*

HHj

Remark : resampling methods (bootstrap) can be applied in order to
assess the statistical uncertainty on the diagnoses due to the limited
size of the verification dataset (Candille et al 2010).
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Benchmarks

Small benchmark (L96) : small size model, idealized assimilation
problem with no model error, relaxation of the observations.
→ highly reproducible system : metrics with no approximation
considering full mathematical generality (multivariate), no
restriction on the numerical cost.

Medium benchmark (SQB) : same as L96 but bigger size model, not
all state variable are observed (SSH + some vertical profiles for
temperature), relaxation of the observations by simulating satellite
traces.
→ reproducible system : approximation on the metrics, numerical
efficiency starts to become an issue.

Large benchmark (NATL025) : much larger size model, real-world
observation data, various sources of model errors.
→ hardly reproducible system : restrictions on the validation
(univariate), need an independent observation dataset, assumptions
on the model errors.
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Multivariate issue

RCRV multivariate extension : M = DDTS−1

Reliable system : E [M] = IL and 1
L tr(E [M]) = 1.
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Prospective issue

Main questions :

Consistency between the prior PDF and the PDF estimated by the
models ? Investigate the ensemble sample size effect on the full PDF
(L96, SQB ?) or on the marginal distributions (NATL025).
→ reliability.

Are the full (L96) or marginal (SQB, NATL025) posterior
distributions consistent with the real errors (L96, SQB) or
independent observations (NATL025) ? Is there a difference between
observed and non-observed data (SQB) ?
→ reliability (+ resolution).

What is the uncertainty related to the posterior distribution ?
→ resolution.
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