E E DQC

Stochastic assimilation methods and validation : a full probabilistic approach.

Guillem Candille¹, J-M. Brankart, P. Brasseur, E. Cosme, S. Metref and J. Verron. November 27 2012

¹MEOM team, LEGI, CNRS / Grenoble-University

Context	Validation	Scores	Benchmarks
Outline			

Context	Validation	Scores	Benchmarks
Outline			

Probabilistic validation

3 Probabilistic scores (univariate)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Context	Validation	Scores	Benchmarks
Ensemble context	t		

SANGOMA purposes :

• Development of advanced stochastic assimilation methods dealing with strongly non-linear and non-gaussian phenomena.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

• Provide an uncertainty estimation associated with the analysis process.

Full ensemble analysis schemes :

- Evolution in time of the covariance errors.
- Consider the ensemble (PDF) as a whole
 → probabilistic validation.

С	o	n	t	e	×	t	
-	-		-	~		-	

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Beyond the deterministic validation ...

RMS Error :

- $RMSE^2 = E[(o m)^2]$
- Deterministic score -negatively oriented- using the ensemble mean as the ensemble estimator.

1st approximation of the ensemble quality ...

Spread Reduction Factor (SRF, Sakov et al 2012) :

• SRF=
$$\left(\frac{tr(HP^{f}H^{T}R^{-1})}{tr(HP^{a}H^{T}R^{-1})}\right)^{\frac{1}{2}} - 1$$

• SRF=0 \rightarrow no change, SRF=1 \rightarrow uncertainty reduction by 2.

1st approximation of the uncertainty reduction ... but no information about the consistency with the real errors.

С	o	n	t	e	×	t	
-	-		-	~		-	

Beyond the deterministic validation ...

RMS Error :

- $RMSE^2 = E[(o m)^2]$
- Deterministic score -negatively oriented- using the ensemble mean as the ensemble estimator.

1st approximation of the ensemble quality ...

Spread Reduction Factor (SRF, Sakov et al 2012) :

• SRF=
$$\left(\frac{tr(HP^{f}H^{T}R^{-1})}{tr(HP^{a}H^{T}R^{-1})}\right)^{\frac{1}{2}} - 1$$

• SRF=0 \rightarrow no change, SRF=1 \rightarrow uncertainty reduction by 2.

1st approximation of the uncertainty reduction ... but no information about the consistency with the real errors.

Context	Validation	Scores	Benchmarks
Outline			

3 Probabilistic scores (univariate)

Context	Validation	Scores	Benchmarks
How to eval	uate an ensemble?		

• 'Forget' the deterministic concepts of validation.

- Ensemble validation by statistical accumulation.
 (→ the ensemble system is highly reproducible)
- Probabilistic criteria :
 - reliability, statistical consistency.
 - resolution or sharpness, statistical variability.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Context	Validation	Scores	Benchmarks
How to eval	uate an ensemble?		

• 'Forget' the deterministic concepts of validation.

- Ensemble validation by statistical accumulation.
 (→ the ensemble system is highly reproducible)
- Probabilistic criteria :
 - reliability, statistical consistency.
 - resolution or sharpness, statistical variability.

Context	Validation	Scores	Benchmarks
Reliability			

• Statistical consistency between the produced ensembles and the corresponding verifications.

- Produced PDF f.
- f'_1 and f'_2 : 2 distributions of x_o when f is produced.
- A system is perfectly reliable if and only if f = f' for all f.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Context	Validation	Scores	Benchmarks
Reliability			

• Statistical consistency between the produced ensembles and the corresponding verifications.

- Produced PDF f.
- f'_1 and f'_2 : 2 distributions of x_o when f is produced.
- A system is perfectly reliable if and only if f = f' for all f.

・ロト ・ 四ト ・ モト ・ モト

э

Context	Validation	Scores	Benchmarks
Resolution			

• Ability of the ensemble system to separate the produced PDF leading to sufficiently distinct corresponding observed distributions (COD).

э

(*nb* : the curve represents the climatological distribution)

Context	Validation	Scores	Benchmarks
Probabilistic	criteria : summary		

• *Reliability* and *resolution* are 2 independent properties, necessary and sufficient in order to evaluate the intrinsic quality and the usefulness of an ensemble system.

• First, an ensemble system must be reliable, but also must be able to *a priori* separate the produced PDF into sufficiently various classes so the corresponding observations represent sufficiently distinct situations.

ション ふゆ く 山 マ チャット しょうくしゃ

Context	Validation	Scores	Benchmarks
Outline			

1 Motivation & context

Probabilistic validation

Operation of the second sec

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Context	Validation	Scores	Benchmarks
Reliability scores			

- Ensemble \longrightarrow N independent realizations from a PDF.
- Reliability : statistical consistency between the produced ensembles and the observed verifications.
 → Is the verification a N+1-st realizations of the PDF defined by the N members of the ensemble ?

• Scores :

- Rank histogram.
- Reduced Centered Random Variable (RCRV).

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Context	Validation	Scores	Benchmarks
Reliability scores			

- \bullet Ensemble \longrightarrow N independent realizations from a PDF.
- Reliability : statistical consistency between the produced ensembles and the observed verifications.
 → Is the verification a N+1-st realizations of the PDF defined by the N members of the ensemble ?
- Scores :
 - Rank histogram.
 - Reduced Centered Random Variable (RCRV).

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Context	Validation	Scores	Benchmarks
Rank histogram			

• Partial order between the N members of the ensemble and the verification.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Context	Validation	Scores	Benchmarks
Rank histogram			

• Partial order between the N members of the ensemble and the verification.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Context	Validation	Scores	Benchmarks
Rank histogram			

• Partial order between the N members of the ensemble and the verification.

- The verification is statistically *indistinguishable* from the N ensemble values → equally distributed over the N+1 intervals.
- The rank histogram *flatness* is a measure of the ensemble reliability.

-

• Deviation from the flatness : $\delta = \frac{N+1}{MN} \sum_{k=1}^{M} \left(s_k - \frac{M}{N+1} \right)^2$. Reliable system : $\delta = 1$.

C	~	-	÷	~~	+
C	U		L	ex	L

Reduced Centered Random Variable (RCRV)

Are the ensemble members and the verification indistinguishable?

- Decompose the reliability into bias (b) and dispersion (d).
- RCRV :

$$y = \frac{o - m}{\sigma}$$

- b = E[y] measures the weighted bias of the system.
- $d^2 = E[y^2] b^2$ measures the agreement between the ensemble spread and the analysis error of the ensemble mean.
- Reliable system : b = 0 and d = 1.
- Remarks :
 - Observational error can be intruduced : $\sigma = \sqrt{\sigma_e^2 + \sigma_o^2}$.
 - $\mathsf{RMSE}^2 \approx E[\sigma^2](d^2 + b^2)$

C	-			۰.	-		
		£	Ľ	u		x	L

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

How to improve the ensemble system reliability?

• Non-reliable ensemble system ...

$$d \equiv Var\left(rac{arepsilon}{\sigma}
ight) > 1$$

C	0	n	÷	0	1	H.
			v	с,		L.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How to improve the ensemble system reliability?

• Non-reliable ensemble system ... and 2 conceivable corrections.

C	-	-	μ.			
C	υ	11	L	2)	C	L

Continuous Ranked Probability Score (CRPS)

• CRPS measures the global quality of an ensemble system :

$$CRPS = E\left[\int_{\Omega} \left(F_p(\xi) - H(\xi - x_o)\right)^2 d\xi\right]$$

 F_p is the cumulative density function (CDF) associated with the produced ensemble.

• Decomposition (Hersbach 2000) : $CRPS = Reli + CRPS_{pot}$.

Context	Validation	Scores	Benchmarks
Reli			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Coefficients are defined for each [x_i, x_{i+1}] depending on the verification position and the interval size.

Context	Validation	Scores	Benchmarks
Reli			

• Coefficients are defined for each [x_i, x_{i+1}] depending on the verification position and the interval size.

 Build the COD and compare to the mean of the CDF produced by the system.

・ロト ・個ト ・ヨト ・ヨト

э

Context	Validation	Scores	Benchmarks
CRPS _{pot}			

• CRPS_{pot} is the potential value of the CRPS when the ensemble system is reliable, *i.e.* Reli = 0.

• The more $\sigma << \Sigma$, better the resolution is.

• Remark : resampling methods (bootstrap) can be applied in order to assess the statistical uncertainty on the diagnoses due to the limited size of the verification dataset (Candille *et al* 2010).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Context	Validation	Scores	Benchmarks
Outline			

1 Motivation & context

Probabilistic validation

3 Probabilistic scores (univariate)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Context	Validation	Scores	Benchmarks
Benchmarks			

- Small benchmark (L96) : small size model, idealized assimilation problem with no model error, relaxation of the observations.
 → highly reproducible system : metrics with no approximation considering full mathematical generality (multivariate), no restriction on the numerical cost.
- Medium benchmark (SQB) : same as L96 but bigger size model, not all state variable are observed (SSH + some vertical profiles for temperature), relaxation of the observations by simulating satellite traces.

 \rightarrow reproducible system : approximation on the metrics, numerical efficiency starts to become an issue.

Large benchmark (NATL025) : much larger size model, real-world observation data, various sources of model errors.
 → hardly reproducible system : restrictions on the validation (univariate), need an independent observation dataset, assumptions on the model errors.

	0				
COILEXL	C	.C	IT	х	τ

Benchmarks

Multivariate issue

RCRV multivariate extension : $M = DD^T S^{-1}$ Reliable system : $E[M] = \mathbf{I}_L$ and $\frac{1}{L}tr(E[M]) = 1$.

マロアスピアスモアスモメーモー のべつ

Context	Validation	Scores	Benchmarks
Prospective issue			

Main questions :

- Consistency between the prior PDF and the PDF estimated by the models? Investigate the ensemble sample size effect on the full PDF (L96, SQB?) or on the marginal distributions (NATL025).
 → reliability.
- Are the full (L96) or marginal (SQB, NATL025) posterior distributions consistent with the real errors (L96, SQB) or *independent* observations (NATL025)? Is there a difference between observed and non-observed data (SQB)?
 → reliability (+ resolution).

• What is the uncertainty related to the posterior distribution ? \rightarrow resolution.

Context	Validation	Scores	Benchmarks
Bibliography			

- Candille G., S. Beauregard, and N. Gagnon. 2010. Bias correction and multiensemble in the NAEFS Context or How to get a 'free calibration' through a multiensemble approach. *Mon. Wea. Rev.*, 138, pp 4268–4281.
- Hersbach H. 2000. Decomposition of the continuous ranked probability score for ensemble prediction systems. *Weatther and Forecasting*, **15**, pp 559–570.
- Sakov P., F. Counillon, L. Bertino, K.A. Lisæter, P.R. Oke, and A. Korablev. 2012. TOPAZ4 : an ocean-sea ice data assimilation system for the North Atlantic and Artic. *Ocean Sci.*, 8, pp 633–656.