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In the context SANGOMA

WHY ?

Oceanic models are complexified

(e.g. ocean-ice coupling, ocean color [F.Garnier, MyOcean])
⇓

Importance of non-Gaussian and nonlinear methods

⇓
New methods must be truly understood to be well applied

⇓
Small case benchmark is a first and crucial step
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In the context SANGOMA

Small case benchmark

Model

Lorenz 96 : composed of 40 equations and 40 variables.

Recursively defined by :

dxi

dt
= xi−1(xi+1 − xi−2)− xi + F ,

for all i = 1, ..., n and with xi−n = xi = xi+n

F being an external forcing term.

Numerics

Time settings

Observations
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Multivariate Rank Histogram Filter

Benefits (in particular w.r.t. most particle filters):

The analysis scheme is utterly deterministic;

Localization is natural;

Divergence is almost impossible for observed variables;

But:

Is much more expensive. Though, it can take advantage of
massively parallel computers;

Remain to be thoroughly investigated and compared to other
methods.
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MRHF : On observed variables

Basic idea: Sequential realization method (Tarantola, 2005,
Section 2.3.3):

p(x1, ..., xn|y1) = p(x1|y1)p(x2|x1, y1)p(x3|x1, x2, y1)p(x4|x1, x2, x3, y1)...

Correction on observed variables : RHF method (univariate)
(Anderson, 2010)
⇒ Analysis on x1 (p(x1|y1)) is performed with a non-Gaussian ”Rank
Histogram” scheme.

Correction on unobserved variables : MRHF method (multivariate)
⇒ Analysis on xi (p(xi |x1, y1, x2, x3, ..., xi−1)) is performed with a
non-Gaussian ”Rank Histogram” scheme as well.

Remark : In (Anderson, 2010), Corrections on unobserved variables are
determined with a linear regression to the corrections on observed
variables.
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MRHF : On observed variables

Univariate RHF

Let x1 be an observed variable as y1,
Bayes theorem then implies :

p(x1|y1) ∝ p(y1|x1)p(x1)

⇒ RHF principle : Strictly apply the latest formula with the
sampled densities
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MRHF : On observed variables

Retrieving the p.d.f. p(x1) from the prior sample
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MRHF : On observed variables
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MRHF : On observed variables

5 10 15 20 25 30 35 40 45
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
P
ro
b
a
b
ili
ty

p(y1|x1) is discretized on the same grid.
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MRHF : On observed variables
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Shur product of the 2 : p(x1|y1). Analysis particles are sampled by
inversion of CDF.
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MRHF : On unobserved variables

Same principle applied on unobserved variable

Random generation of xi from p(xi |x1 = {xa1}ipart , xj 6=i )

⇒ Pb: Leads to drastic corrections (e.g. multimodal systems)

Solution: [Other schemes in development]

Matching CDF values of xi |x1 = {xb1 }ipart to the CDF values of

xi |x1 = {xa1}ipart
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MRHF : On unobserved variables
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Marginal CDF of xi |x1 = {xb1 }ipart and xi |x1 = {xa1}ipart are formed.
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MRHF : On unobserved variables
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The analysis value for X a
i is obtained by preserving the particle

position in the marginal CDFs.
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Multi-variate Rank Histogram Filter

Principle summary

Sequential realisation method

Deterministically based on the Bayes theory

Use the rank histogram process to compute PDFs

Remark: Process executed for each particle independently
(parallel processing)

Resample from the updated PDFs
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Preliminary results on the small case benchmark

1 Observations every 2 grid points, 10 time steps, R = 2.25
(Nakano et al., 2007);

2 Localization: 3 grid points, Eq. 4.10 of Gaspari and Cohn
(1999). Applied to MRHF too; Covariance inflation,
α = 1.005;

3 The joint PDF decomposition,

p(x1, ..., xn|y1) = p(x1|y1)p(x2|x1, y1)

p(x3|x1, x2, y1)p(x4|x1, x2, x3, y1)...

is approximated by:

p(x1, ..., xn|y1) ≈ p(x1|y1)p(x2|x1, y1)p(x3|x1, y1)p(x4|x1, y1)....

Several reasons:
Much less subject to sampling related problems;
Can be parallelized (but it is not here).
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Preliminary results on the small case benchmark

Ensemble states plot (100 particles, TS = 0)
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Preliminary results on the small case benchmark

RMSE plot (100 particles, α = 1.005)
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Preliminary results on the small case benchmark

Ensemble states plot (100 particles, α = 1.005, TS = 1000)
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Preliminary results on the small case benchmark

Talagrand diagram (100 particles, α = 1.005)
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Conclusions and Perspectives

What has been done ?

This work is only starting... Conclusions are preliminary;

The MRHF seems to perform well with L96;

Emmanuel had promising results with L63 in a strongly non
Gaussian setup

What is to be done ?

Improve parallelization (communication between nodes);

Implement evaluation tools (SANGOMA metrics);

Compare with other methods (including implicit PF or PF
with smart proposal).
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MRHF : On observed variables
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Background ensemble in X − Z plane.
Red dotted line: Z obs. Red square: truth.
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MRHF : On observed variables
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MRHF : On observed variables
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MRHF : On unobserved variables
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For each particle i , an analyzed value for X must be calculated.
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MRHF : On unobserved variables
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To form p(X |Z = Z a
i ), select particles in the analysis ensemble.

Analysis could be randomly drawn from it. (Not optimal)
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MRHF : On unobserved variables
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Instead, we select particles to estimate p(X |Z = Zb
i ) too.



References

MRHF : On unobserved variables
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Marginal CDF of xi |x1 = {xb1 }ipart and xi |x1 = {xa1}ipart are formed.
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MRHF : On unobserved variables
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The analysis value for X a
i is obtained by preserving the particle

position in the marginal CDFs.
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MRHF : On unobserved variables
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This is done for each particle. Can be done in parallel.
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MRHF : On unobserved variables
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Bimodal PDF represented by 15 particles

Red PDF is sampled, and the 15 particles are used to build a RH
PDF (blue).
RH PDF is not 0 between the 2 modes.
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L95, 100 particles, α = 1
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L95, 100 particles, α = 1.005
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L95, 100 particles, α = 1
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L95, 100 particles, α = 1
1000th time step
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