A deterministic, fully non Gaussian analysis scheme for ensemble filters: Multivariate Rank Histogram Filter

Sammy Metref¹, Emmanuel Cosme² et al.

¹ CNRS, LEGI; ² Université Joseph Fourier - Grenoble 1, LEGI

Project supported by the region Rhône Alpes, NCAR, and the European Commission

In the context SANGOMA

WHY?

Oceanic models are complexified (e.g. ocean-ice coupling, ocean color [F.Garnier, MyOcean]) ↓ Importance of non-Gaussian and nonlinear methods

New methods must be truly understood to be well applied

Small case benchmark is a first and crucial step

In the context SANGOMA

Small case benchmark

Model

Lorenz 96 : composed of 40 equations and 40 variables. Recursively defined by :

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for all i = 1, ..., n and with $x_{i-n} = x_i = x_{i+n}$ F being an external forcing term.

- Numerics
- Time settings
- Observations

Multivariate Rank Histogram Filter

Benefits (in particular w.r.t. most particle filters):

- The analysis scheme is utterly deterministic;
- Localization is natural;
- Divergence is almost impossible for observed variables;

But:

- Is much more expensive. Though, it can take advantage of massively parallel computers;
- Remain to be thoroughly investigated and compared to other methods.

<u>Basic idea</u>: Sequential realization method (Tarantola, 2005, Section 2.3.3):

 $p(x_1,...,x_n|y_1) = p(x_1|y_1)p(x_2|x_1,y_1)p(x_3|x_1,x_2,y_1)p(x_4|x_1,x_2,x_3,y_1)...$

 Correction on observed variables : RHF method (univariate) (Anderson, 2010)
⇒ Analysis on x₁ (p(x₁|y₁)) is performed with a non-Gaussian "Rank Histogram" scheme.

Correction on unobserved variables : MRHF method (multivariate)
⇒ Analysis on x_i (p(x_i|x₁, y₁, x₂, x₃, ..., x_{i-1})) is performed with a non-Gaussian "Rank Histogram" scheme as well.

<u>Remark</u> : In (Anderson, 2010), Corrections on unobserved variables are determined with a linear regression to the corrections on observed variables.

Univariate RHF

Let x_1 be an observed variable as y_1 , Bayes theorem then implies :

$p(x_1|y_1) \propto p(y_1|x_1)p(x_1)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 \Rightarrow RHF principle : Strictly apply the latest formula with the sampled densities

Retrieving the p.d.f. $p(x_1)$ from the prior sample

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

<ロ> <@> < E> < E> E のQの

SAC

Shur product of the 2 : $p(x_1|y_1)$. Analysis particles are sampled by inversion of CDF.

Same principle applied on unobserved variable

Random generation of x_i from $p(x_i|x_1 = \{x_1^a\}_{i_{part}}, x_{j \neq i})$

 \Rightarrow <u>Pb</u>: Leads to drastic corrections (e.g. multimodal systems)

Solution: [Other schemes in development]

Matching CDF values of $x_i | x_1 = \{x_1^b\}_{i_{part}}$ to the CDF values of $x_i | x_1 = \{x_1^a\}_{i_{part}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

The analysis value for X_i^a is obtained by preserving the particle position in the marginal CDFs.

Multi-variate Rank Histogram Filter

Principle summary

- Sequential realisation method
- Deterministically based on the Bayes theory
- Use the rank histogram process to compute PDFs

<u>Remark</u>: Process executed for each particle independently (parallel processing)

• Resample from the updated PDFs

- Observations every 2 grid points, 10 time steps, R = 2.25 (Nakano et al., 2007);
- **2 Localization**: 3 grid points, Eq. 4.10 of Gaspari and Cohn (1999). Applied to MRHF too; **Covariance inflation**, $\alpha = 1.005$;
- The joint PDF decomposition,

$$p(x_1, ..., x_n | y_1) = p(x_1 | y_1) p(x_2 | x_1, y_1)$$
$$p(x_3 | x_1, x_2, y_1) p(x_4 | x_1, x_2, x_3, y_1) ...$$

is approximated by:

 $p(x_1,...,x_n|y_1) \approx p(x_1|y_1)p(x_2|x_1,y_1)p(x_3|x_1,y_1)p(x_4|x_1,y_1)...$

Several reasons:

- Much less subject to sampling related problems;
- Can be parallelized (but it is not here).

Ensemble states plot (100 particles, TS = 0)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣�()~.

RMSE plot (100 particles, $\alpha = 1.005$)

Ensemble states plot (100 particles, $\alpha = 1.005$, TS = 1000)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Talagrand diagram (100 particles, $\alpha = 1.005$)

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ● ●

Conclusions and Perspectives

What has been done ?

- This work is only starting... Conclusions are preliminary;
- The MRHF seems to perform well with L96;
- Emmanuel had promising results with L63 in a strongly non Gaussian setup

What is to be done ?

- Improve parallelization (communication between nodes);
- Implement evaluation tools (SANGOMA metrics);
- Compare with other methods (including implicit PF or PF with smart proposal).

A non exhaustive list of references

- Anderson, J., 2010: A non-gaussian ensemble filter update for data assimilation. *Monthly Weather Review*, **138**, 4186–4198.
- Gaspari, G. and S. Cohn, 1999: Construction of correlation functions in two and three dimensions. *Quaterly Journal of the Royal Metorological Society*, **125**, 723–757.
- Nakano, S., G. Ueno, and T. Higuchi, 2007: Merging particle filter for sequential data assimilation. *Nonlin. Processes Geophys.*, 14, 395–408.

Tarantola, A., 2005: *Inverse problem theory and methods for model parameter estimation*. SIAM.

Background ensemble in X - Z plane. Red dotted line: Z obs. Red square: truth: $\exists r \in \exists r \in Z$

Background Z ensemble for RHF analysis.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

For each particle *i*, an analyzed value for X must be calculated.

To form $p(X|Z = Z_i^a)$, select particles in the analysis ensemble. Analysis could be randomly drawn from it: (Not optimal)

Instead, we select particles to estimate $p(X|Z = Z_i^b)$ too.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

The analysis value for X_i^a is obtained by preserving the particle position in the marginal CDFs.

This is done for each particle. Can be done in parallel.

・ロット 御マン きゅう

References

Bimodal PDF represented by 15 particles

Red PDF is sampled, and the 15 particles are used to build a RH PDF (blue). RH PDF is not 0 between the 2 modes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

L95, 100 particles, $\alpha = 1$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

L95, 100 particles, $\alpha = 1.005$

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

L95, 100 particles, $\alpha = 1$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

References

L95, 100 particles, $\alpha=1$ 1000th time step

