A deterministic, fully non Gaussian
analysis scheme for ensemble filters:
Multivariate Rank Histogram Filter

Sammy Metref!, Emmanuel Cosme? et al.

1 CNRS, LEGI; 2 Université Joseph Fourier - Grenoble 1, LEGI

Project supported by the region Rhone Alpes,
NCAR, and the European Commission

Rhéne\lpés INNCAR ) [ wosiiue P %



In the context SANGOMA

WHY ?

Oceanic models are complexified
(e.g. ocean-ice coupling, ocean color [F.Garnier, MyOcean])

4

Importance of non-Gaussian and nonlinear methods

Y

New methods must be truly understood to be well applied

4

Small case benchmark is a first and crucial step



In the context SANGOMA

Small case benchmark
o Model
Lorenz 96 : composed of 40 equations and 40 variables.
Recursively defined by :

dx;
dftl = Xj-1(Xi+1 — Xi—2) — x;i + F,
foralli=1,...,n and with Xi—, = X;i = Xjtn

F being an external forcing term.
@ Numerics
o Time settings

o Observations



Multivariate Rank Histogram Filter

Benefits (in particular w.r.t. most particle filters):

@ The analysis scheme is utterly deterministic;

@ Localization is natural;

@ Divergence is almost impossible for observed variables;
But:

@ |s much more expensive. Though, it can take advantage of
massively parallel computers;

@ Remain to be thoroughly investigated and compared to other
methods.



MRHF : On observed variables

Basic idea: Sequential realization method (Tarantola, 2005,
Section 2.3.3):

p(x1, ..., Xaly1) = p(x1ly1) p(xe|x1, y1)p(x3|x1, X2, y1)P(Xa|X1, X2, X3, ¥1)...

@ Correction on observed variables : RHF method (univariate)
(Anderson, 2010)

= Analysis on x1 (p(x1|y1)) is performed with a non-Gaussian ”Rank
Histogram” scheme.

@ Correction on unobserved variables : MRHF method (multivariate)
= Analysis on x; (p(xi|x1, y1,X2,X3,...,xi—1)) is performed with a
non-Gaussian "Rank Histogram” scheme as well.

Remark : In (Anderson, 2010), Corrections on unobserved variables are
determined with a linear regression to the corrections on observed
variables.



MRHF : On observed variables

Univariate RHF

Let x; be an observed variable as yy,
Bayes theorem then implies :

p(x1ly1) o« p(y1lx1)p(x1)

= RHF principle : Strictly apply the latest formula with the
sampled densities



MRHF : On observed variables

Retrieving the p.d.f. p(x1) from the prior sample

Probability

X X X, X, X,

1 3

Areas in between particles sum up to 1



MRHF : On observed variables
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p(x1) is formed.



On observed variables
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p(y1|x1) is discretized on the same grid.




MRHF : On observed variables
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Shur product of the 2 : p(x1|y1). Analysis particles are sampled by
inversion of CDF.



MRHF : On unobserved variables

Same principle applied on unobserved variable

Random generation of x; from p(x;|x1 = {x{ }i,.» Xji)
= Pb: Leads to drastic corrections (e.g. multimodal systems)
Solution: [Other schemes in development]

Matching CDF values of xj|x; = {x{},,. to the CDF values of

Xi|x1 = {X{ }ipor



MRHF : On unobserved variables
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Marginal CDF of xj|x; = {x{},. and xi|x1 = {x{},,,. are formed.



MRHF : On unobserved variables
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The analysis value for X? is obtained by preserving the particle
position in the marginal CDFs.



Multi-variate Rank Histogram Filter

Principle summary

@ Sequential realisation method
@ Deterministically based on the Bayes theory

@ Use the rank histogram process to compute PDFs

Remark: Process executed for each particle independently
(parallel processing)

@ Resample from the updated PDFs



Preliminary results on the small case benchmark

© Observations every 2 grid points, 10 time steps, R = 2.25
(Nakano et al., 2007);

© Localization: 3 grid points, Eq. 4.10 of Gaspari and Cohn
(1999). Applied to MRHF too; Covariance inflation,
a = 1.005;

© The joint PDF decomposition,

p(xt, ..., Xnly1) = p(x1|y1)p(x2|x1, y1)
p(x3|x1, x2, y1)p(xa|x1, x2, X3, y1)...

is approximated by:

p(x1, ..., Xnly1) = p(xa|y1)p(x2|x1, y1)p(x3|x1, y1)p(xa|x1, y1)-...

Several reasons:

@ Much less subject to sampling related problems;
s Can be parallelized (but it is not here).



Preliminary results on the small case benchmark

Ensemble states plot (100 particles, TS = 0)

Initial ensemble

— : Ensemble states — : True state



Preliminary results on the small case benchmark

RMSE plot (100 particles, o = 1.005)

— EnKF RMSE
— RHF RMSE
— MRHF
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Preliminary results on the small case benchmark

Ensemble states plot (100 particles, & = 1.005, TS = 1000)

EnKF

MRHF

— : Ensemble states — : True state



Preliminary results on the small case benchmark

Talagrand diagram (100 particles, o = 1.005)

EnKF

MRHF URHF
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Conclusions and Perspectives

What has been done 7
@ This work is only starting... Conclusions are preliminary;
@ The MRHF seems to perform well with L96;

@ Emmanuel had promising results with L63 in a strongly non
Gaussian setup

What is to be done 7
@ Improve parallelization (communication between nodes);
@ Implement evaluation tools (SANGOMA metrics);

@ Compare with other methods (including implicit PF or PF
with smart proposal).
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MRHF : On observed variables
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Background ensemble in X — Z plane.
Red dotted line: Z obs. Red sauare: truth.
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MRHF : On observed variables
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Background Z ensemble for RHF analysis.
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MRHF : On observed variables
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MRHF : On unobserved variables
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For each particle /, an analyzed value for X must be calculated.
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MRHF : On unobserved variables
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To form p(X|Z = Z7), select particles in the analysis ensemble.
Analvsis could be randomlv drawn from it: (Not optimal)
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MRHF : On unobserved variables
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Instead, we select particles to estimate p(X|Z = ZP) too.
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MRHF : On unobserved variables

1.0 . . . —— 1.0 . ————
0.8F 0.81

061 0.61
w w
() (=]
o o

0.4 0.4

02 0.2

; ; ; i
09% =5 -1 0 0 20 30 %0 —30 20 -10 0 10 20 30 40
X X

Marginal CDF of xj|x; = {x{},. and xi|x1 = {x{},,,. are formed.
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MRHF : On unobserved variables
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The analysis value for X? is obtained by preserving the particle
position in the marginal CDFs.
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MRHF : On unobserved variables
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This is done for each particle. Can be done in parallel.
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MRHF : On unobserved variables
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Bimodal PDF represented by 15 particles

Red PDF is sampled, and the 15 particles are used to build a RH
PDF (blue).
RH PDF is not 0 between the 2 modes.
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L95, 100 particles, a =1

— EnKF RMSE
— RHF RMSE
— MRHF
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L95, 100 particles, o« = 1.005
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L95, 100 particles, a =1
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L95, 100 particles, aa =1

1000th time step
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