Assimilation of HF Radar and SST information in the Ligurian Sea



François Laenen
Alexander Barth & Yajing Yan & Jean-Marie Beckers

# Domain and parameters

- ROMS model
- 1/60th degree resolution
- 100 members
- Inflation : 1-1.05
- Correlation length: 30 km
- Analysis window: 6 hours (or 12)
- No twin
   experiment:
   validation done
   with
   independant

data (mainly

drifters)



#### **Perturbations**

#### Perturbed fields:

- Wind
- Boundary conditions

Method: Fourier decomposition taking into account time variability of 2D fields, see

Barth, A., Alvera-Azcárate, A., Beckers, J., & Staneva, J. (2010). Correcting surface winds by assimilating high-frequency radar surface currents in the German Bight. *Ocean Dynamics*, 1–29.

Typical uncertainties (1 week free run from same initial conditions and perturbed fields)



#### Observations

High frequency radar currents

#### Errors:

- Instrumental derived from variance measurment over several measures (~5cm/s)
- Representativity to be tuned (~30cm/s) (spatial correlation ?)



First case:
Observations = only radar currents.
Only correct model output

Observation operator: forecast speeds transformed to radial on same grid as observations (see hfradar\_extractf routine)

## Forecast - observations

# Analysis - observations



RMS gain : ~10-20%

# Zonal velocity (u): Ensemble spread



# High frequency radars assimilation

### Other observations available

Sea surface temperature (METOP-A)

#### Errors:

- Instrumental (~0.5 °C)
- Representativity error: to be tuned (1-2°C)



## Second case:

Observations = radar currents + SST

Correction of model output

#### Third case:

Observations = radar currents + SST

Correction of model output and

forcings and lateral conditions