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Outline

I Weakly constrained ensemble perturbations

I German Bight experiments (estimation of tidal boundary

conditions and wind forcing using HF radar observations)

I Ligurian Sea experiments



Improved parametrization of error covariance

I error covariance is crucial for data assimilation

I the model error covariance defines the vector space of possible model states

I ensemble method relies on perturbing model initial condition, forcing, ... within
the limit of their uncertainty

I error covariance matrix P ⇐⇒ method for creating perturbations x(k)

x(k) = P1/2z(k) k ensemble index

P = E
[
(x− E [x]) (x− E [x])T

]
I Instead of enforcing a dynamical balance as a post-processing step after the

analysis, it is preferable to choose only dynamically balanced ensemble members
(if possible)



Weakly constrained ensemble perturbations

I By validation of the model with observations one can obtain an estimate of the
magnitude of the perturbation.

I But which spatial structure?

I Method to create ensemble perturbation that satisfy a priori linear constraints

I Example of constraints:

• geostrophic equilibrium

• zero horizontal divergence of surface winds

• stationary solution to the advection-diffusion equation

• the linear shallow water equations

• perturbations should be close to a subspace defined by e.g. empirical or-
thogonal functions (EOFs).

• ...



Probability of a perturbation

I To describe our a priori knowledge of what a realistic perturbation is, we intro-
duce a cost function J , similar to the cost function used in variational analysis
techniques:

J(x) = “linear balance”2 + “smooth”2 + “limited amplitude”2

I The cost function can be used to define the probability of a perturbation x (e.g.
Kalnay, 2002):

p(x) = α exp (−J(x)) (1)

I Perturbations are derived from the Hessian matrix of J .

I Article and source code (for MATLAB and GNU Octave) is available at http:

//modb.oce.ulg.ac.be/mediawiki/index.php/WCE

http://modb.oce.ulg.ac.be/mediawiki/index.php/WCE
http://modb.oce.ulg.ac.be/mediawiki/index.php/WCE


Impact of barriers

I The “smoothness” constraint is implemented through a diffusion operator (lapla-
cian), it takes thus the land-sea mask into account

I Ensemble covariance using “classical” Fourier modes (a) and constrained pertur-
bations based on the land-sea mask (b).



Harmonic shallow water equations

I For tidal models, perturbations should be approximately a harmonic solution to
the shallow water equations
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I Horizontal covariance of the constrained perturbations between the point near
the open boundary marked by a black dot and all other grid points.



German Bight model

I General Estuarine Ocean Model (GETM Burchard and Bolding, 2002)

I 3-D primitive equations with a free-surface

I 21 σ levels, resolution of about 0.9 km.

I nested in a 5-km resolution North Sea-Baltic Sea model

I ETOPO-1 topography with observations from BSH

I Atmospheric fluxes are estimated by the bulk formulation using 6-hourly ECMWF
re-analysis

I Implementation by GKSS (Staneva et al., 2009).



HF radar observations
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I Spatial coverage of the HF radar
zonal and meridional surface ve-
locity observations

I The number of samples available
at each observation grid point
is color–coded according to the
color-bar.

I The crosses show the location of
HF radar antennas.

I The operating frequency:
29.85 MHz (coupling to 5.02 m
long ocean waves).

I HF Radar measurements from
University of Hamburg (PRISMA
project)



Empirical Ocean Tides (EOT08a)
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I M2 amplitude (in m) and phase (in degrees) of EOT08a for the German Bight
based on altimetry.

I complex tidal parameters are assimilated



Observations
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Smoother scheme

I M2 tidal boundary conditions are perturbed within the range of their uncertainty
to create a ensemble with 51 members. Perturbations are constrained by the
linear shallow water equations.

I The GETM model is run for 40 days with each of those perturbed boundary
values.

I All HF radar observations at any time instance within the integration period and
the EOT parameters are grouped in the observation vector (vector yo) with their
corresponding error covariance (matrix R) estimated by cross-validation.

I The observations are extracted from every ensemble member (vector h(x(k))).

I Schematically, the non-linear operator h(·) performs the following operations:

h(·) = Interpolation to obs. location ◦Model integration with perturbed forcing
(2)



Smoother scheme

I The optimal perturbation is given the Kalman analysis (using non-linear obser-
vation operators as in Chen and Snyder (2007)):

xa = xb + A (B + R)−1
(
yo − h(xb)

)
(3)

I where the matrices A and B are covariances estimated from the ensemble.

A = cov(xb, h(xb)) =
〈

(x− 〈x〉) (h(x)− 〈h(x)〉)T
〉

(4)

B = cov(h(xb), h(xb)) =
〈

(h(x)− 〈h(x)〉) (h(x)− 〈h(x)〉)T
〉

(5)

where 〈·〉 is the ensemble average.

I But covariance matrices do not need to be formed explicitly. Analysis is performed
in the subspace defined by the ensemble members.



Smoother scheme

I For a linear model and an infinite large ensemble, equation (14) minimizes,

J(x) = (x− xb)TPb−1(x− xb) + (yo − h(x))TR−1(yo − h(x)) (6)

or

J(x) = (x− xb)TPb−1(x− xb) +
∑
n

(yon − (h(x)n))TRn
−1(yon − (h(x)n)) (7)

where n references to the indexed quantifies at time n. This is the cost function
from which 4D-Var and Kalman Smoother can be derived.

I Approach is closely related to Ensemble Smoother (van Leeuwen, 2001), 4D-
EnKF (Hunt et al., 2007) and AEnKF (Sakov et al., 2010) where model tra-
jectories instead of model states are optimized and to the Green’s method with
stochastic “search directions”

I The model is rerun with the optimized boundary values for 60 days.



RMS difference

RMS2 = lim
T→∞

1

T

∫ T

0

(A cos(ωt− φ)− A′ cos(ωt− φ′))2dt (8)

=
A2 + A′2

2
− AA′ cos(φ− φ′) (9)
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RMS difference between surface current observations due to the M2 tides and the
corresponding model results without (left panel) and with assimilation (right panel).



Comparison with un-assimilated observations (M2)
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I RMS difference between surface current observations (not used in the assimi-
lation) due to the M2 tides and the corresponding model results without (left
panel) and with assimilation (right panel).

I Analysis RMS compared to unassimilated data is only 0.002 m/s larger than
compared to assimilated data



Tide gage observations

Helgoland Cuxhaven
amplitude phase RMS amplitude phase RMS

Observations 1.13 304 1.36 334
Free 0.81 318 0.28 0.95 15 0.63

Assimilation 0.97 302 0.12 1.08 2 0.46

Table 1: Comparison with tide gage observations. Amplitude is in m and phase in
degrees.

I Tide gage observations from different time period → only comparison of tidal
parameters

I Helgoland within the area covered by radar, but not Cuxhaven

I The assimilation reduces the RMS error by a factor of 2 for Helgoland and by a
factor of 1.4 for Cuxhaven.

I Ocean Science, 6, 161–178, 2010 http://www.ocean-sci.net/6/161/2010/

os-6-161-2010.pdf.

http://www.ocean-sci.net/6/161/2010/os-6-161-2010.pdf
http://www.ocean-sci.net/6/161/2010/os-6-161-2010.pdf


Wind estimation from HF radar observations

I Ensemble of 100 wind forcings are created (by using a Fourier decomposition)

I estimation vector x: u- and v- component of wind forcing

I observations: yo: surface currents

I “observation operator” h(·):

h(·) = Interpolation to obs. location ◦Model integration with perturbed wind
(10)
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Figure 1: Measured wind speed, wind speed from ECMWF and analyzed wind speed
at Helgoland. Units are m/s.
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Figure 2: Measured wind speed, wind speed from ECMWF and analyzed wind speed
at Sylt. Units are m/s.



Comparison with satellite SST

Figure 3: RMS difference between AVHRR SST and
model SST without assimilation (left panel) and
with assimilation (right panel)

SHF RMS skill score

Free – 1.21 0.00
Analysis 0.5 1.09 0.19

1.0 1.09 0.19
1.5 1.10 0.18
2.0 1.11 0.16
2.5 1.12 0.14
5.0 1.16 0.08

RMS is expressed in ◦C and
SHF in m/s.



Ligurian Sea Model (WP5)

I ROMS nested in
Mediterranean
Ocean Forecasting
System

I 1/60 degree resolu-
tion and 32 vertical
levels

I Currents: Western
& Eastern Corsican
Current, Northern
Current, inertial os-
cillation

I Two WERA HF
radar systems (Pal-
maria, San Rossore)
by NATO Undersea
Research Centre
(NURC)



Observations

I Frequency of ν = 12.359 MHz and coupled to a wave length of λb = 12.13 m,

I Radial currents are used for the assimilation

I Azimuthal resolution of 6 degrees

I Currents are averaged over 1 h

Radial currents on 2010-07-06 21:30 relative to the Palmaria site: left panel shows
WERA measurements and right panel shows ROMS results without assimilation.



Observations

Radial currents on 2010-07-06 01:30 relative to the San Rossore site: left panel shows
WERA measurements and right panel shows ROMS results without assimilation.



Observation operator

I Radial currents are extracted by:

uHF =
kb

1− exp(−kbh)

∫ 0

−h
u(z) · er exp(kbz)dz (11)

• kb = 2π
λb

• er is the unit vector pointing in the direction opposite to the location of
the HF radar site

• positive values: current away from the system

• essentially represent an average over the upper meters.

I Smoothed in the azimuthal direction by a diffusion operator to filter scales smaller
than 6 degrees



Model errors covariance

I Estimated by ensemble simulation where uncertain aspect of the model are per-
turbed

I Perturbed zonal and meridional wind forcing

I Perturbed boundary conditions (elevation, velocity, temperature and salinity)

I Perturbed momentum equation (ε)

du

dt
+ Ω ∧ u = − 1

ρ0
∇hp+

1

ρ0
∇ · Fu +∇h ∧ ε ez (12)

(13)

• where ∇h = ex
∂
∂x

+ ey
∂
∂y

• does not create horizontal convergence or divergence (linked to barotropic
waves)

• can create mesoscale flow structures (absent or misplaced)



Ensemble spin-up
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I Ensemble of IC is created by a 7 day ensemble integration starting from the same
IC but with perturbed forcing (ensemble spin-up)

I Spin-up should create mesoscale circulation features



Velocity spread

Surface velocity ensemble spread after 7 days (m/s)
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I Velocity spread after 7 days

I Largest uncertainties near eddies



Spatial correlation
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I Correlation of temperature at a specific point (magenta circle) and other surface
grid points

I Resulting length-scale is about 50 km



Spatial correlation
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I Correlation of zonal velocity at a specific point (magenta circle) and other surface
grid points

I Resulting length-scale is about 10 km

I Adequately observing surface velocity would require measurements with higher
spatial resolution that the resolution of temperature measurements



Temporal correlation
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Data assimilation scheme

I Time dimension embedded in estimation vector x

I Different definitions of estimation vector are possible:

• x = (model trajectory), i.e. model state at all time instances

• x = (uncertain forcing fields), here IC, BC, wind and stochastic error term
at all time instances

• x = (model trajectory, uncertain forcing fields)

I The optimal x is given by the Kalman analysis (using non-linear observation
operators as in Chen and Snyder (2007)):

xa = xb + A (B + R)−1
(
yo − h(xb)

)
(14)

I where the matrices A and B are covariances estimated from the ensemble.

A = cov(xb, h(xb)) =
〈

(x− 〈x〉) (h(x)− 〈h(x)〉)T
〉

(15)

B = cov(h(xb), h(xb)) =
〈

(h(x)− 〈h(x)〉) (h(x)− 〈h(x)〉)T
〉

(16)

where 〈·〉 is the ensemble average.
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Estimation of trajectory versus estimation of forcing fields
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Optimizing trajectory

Optimizing forcing

I Both approaches equivalent for linear system (and additive noise)

I Unrealistic “ensemble extrapolation” when too small observation errors are used
→ model trajectory and forcing fields are inconsistent



Error statistics for Palmaria Site

Without assimilation
(positive values: current
away from the magenta
dot)

With assimilation



Forecasts
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Forecast with DA

I Impact of data assimilation on current forecast

I Comparison with surface currents from Palmaria

I HF radar assimilation improves the strength of the Northern Current and this
improvement persists for some time.



Simulation with atmospheric model (WRF)

I blue arrows: WRF 10m
wind vectors, red arrows:
in situ wind measurements
from ICOADS (Inter-
national Comprehensive
Ocean-Atmosphere Data
Set).wind_LS2.mp4

I 3 WRF domains at 30, 10,
3.33 km resolution (two-way
nesting). The limit of those
domains are shown in black.

I 30-km grid model nested
(one-way) into the Global
Forecast System

I 28 vertical layers

wind_LS2.mp4


Model results with different wind forcings

I Total RMS dif-
ferences (m/s):

Pal. Ros.
COSMO 0.14 0.11

WRF 0.13 0.14

Figure 4: Radial surface current RMS difference



Ocean Assimilation Kit

I Reduced rank square root analysis

I Global and local algorithm

I Modular Fortran 90 program

I Flexible definition of state vector

I Supports arbitrary curvilinear grid

I Local algorithm parallelized with OpenMP and MPI

I NetCDF or Fortran binary files as input

Model.variables = [ ’zeta’, ’temp’, ’salt’]

Model.gridX = [’domain.nc#lon(:,:,end)’,’domain.nc#lon’,’domain.nc#lon’]

Model.gridY = [’domain.nc#lat(:,:,end)’,’domain.nc#lat’,’domain.nc#lat’]

Model.gridZ = [ ’domain.nc#z(:,:,end)’, ’domain.nc#z’, ’domain.nc#z’]

Model.mask = [ ’domain.nc#z(:,:,end)’, ’domain.nc#z’, ’domain.nc#z’]

Model.path = ’/home/user/Data/’

Syntax:
NetCDF_filename.nc#NetCDF_variable(index list)



Ocean Assimilation Kit - Observations

Obs001.time = ’2010-07-06T00:30:00.00’ ! time as YYYY-MM-DDThh:mm:ss

Obs001.path = ’Obs/’ ! where the file can be found

Obs001.variables = [ ’TEM’] ! name as in Model.variables

Obs001.names = [ ’temp_profile’] ! descriptive name

Obs001.gridX = [ ’obs1.nc#lon’] ! longitude

Obs001.gridY = [ ’obs1.nc#lat’] ! latitude

Obs001.gridZ = [ ’obs1.nc#z’] ! depth

Obs001.value = [ ’obs1.nc#temp’] ! value of the observations

Obs001.mask = [ ’obs1.nc#temp’] ! mask of the observations

Obs001.rmse = [ ’obs1.nc#temp_rmse’] ! root mean square error

Implementation

Compact algorithm using Fortran operators:

Hxf = H.x.xf

increment = Sf.x.(U.x.(lambda.dx.(U.tx.(HSf.tx.(invsqrtR**2*(yo-Hxf))))))

Definition of operators .x., .tx., .dx and sparse matrix type H



Conclusions

I Ensemble assimilation methods require realistic perturbation schemes (error co-
variances) which can be based on dynamical relationships (similar to Variational
analysis)

I Tidal boundary conditions can be constrained by HF radar measurements.

I Correcting tidal boundary conditions avoids (or at least reduces) systematic errors
in the model solution.

I Similar approach can also be used to adjust wind forcings using HF radar data.

I Embedding the time dimension into the state vector leads to a smoother scheme
(which is very simple to implement)

I Smoother schemes can be used to estimate the optimal model trajectory or
forcing field

I Both approaches are not equivalent for non-linear systems or multiplicative noise
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Perturbations scheme

The cost function is a quadratic function in x and can thus be written as:

2J(x) = xT (MTWMM + DTWDD + WE)x (17)

= xTB−1x (18)



where the matrix B (covariance matrix, not formed explicitly) is defined as:

B = (MTWMM + DTWDD + WE)−1 (19)

To generate an ensemble of perturbations that follows the previous pdf, the matrix
B is decomposed in eigenvectors (rows of U) and eigenvalues (diagonal elements of
Λ) :

B = UΛUT (20)

The smaller an eigenvalue is, the stronger the corresponding eigenvector violates
the dynamical and smoothness constraint.

An ensemble of vectors z(k) where the subscript k is the ensemble member, is
created following a normal distribution.

z ∼ N(0, In) (21)

An ensemble of perturbations x(k) following (1) can be obtained by:

x(k) = UΛ1/2z(k) (22)

Alternatively, one can use the 2nd order exact re-sampling method (SEIK):

x(k) = UΛ1/2Hw(Ω)k (23)



where columns of Hw are all perpendicular to the vector 1N×1 and (Ω)k is the
k-column of a random orthogonal matrix Ω.



I Also perturbations with a spatially varying correlation length can be created.

I Scale of mesoscale variability → internal radius of deformation which varies in
space:

I Illustration of a random field with a variable correlation length.



Examples for linear constraints

Advection constraint

I For large-scale models, perturbations should be approximately stationary solu-
tions to the advection equation

v · ∇φ = 0 (24)



I Example of ensemble perturbations using the advection constraint



Application to HF Radar assimilation in the German
Bight (tidal BC)

I Only M2 tidal boundary conditions are perturbed:

ζ(k) = ζ(b) + < (ζ ′(x, y) exp(iωt)) (25)

where ω is the M2 angular frequency and ζ ′(x, y) is a random field satisfying
approximately the harmonic shallow water equations:

iωζ ′ +
∂(hu′)

∂x
+
∂(hv′)

∂y
= 0 (26)

iωu′ − fv′ + g
∂ζ ′

∂x
= 0 (27)

iωv′ + fu′ + g
∂ζ ′

∂y
= 0 (28)

I The 50 eigenvector with the largest eigenvalues of the matrix B from (20) are
calculated (providing the spatial structure of the perturbation).



I From those 50 eigenvector/eigenvalues an ensemble of 51 members is created
with zero mean (2nd order exact re-sampling).

I The GETM model is run for 40 days with each of those perturbed boundary
values.

I Observations are assimilated with an expected RMS error of 0.3 m/s (includ-
ing representativity error and error that cannot be corrected modifying only the
boundary conditions) providing an optimal increment of the boundary values.

I The model is rerun with the optimized boundary values for 60 days.


