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OverviewOverview



 

The Mathematical Physics group in DelftThe Mathematical Physics group in Delft


 

AdjointAdjoint--free free variationalvariational data assimilation: data assimilation: 
An ensemble approach to An ensemble approach to variationalvariational data data 
assimilationassimilation



Delft Institute of Applied MathematicsDelft Institute of Applied Mathematics 

In total 60 In total 60 ftefte staff, 45 PhD students, 6 Sections:staff, 45 PhD students, 6 Sections:



 

AnalysisAnalysis


 

ProbabilityProbability


 

StatisticsStatistics


 

Mathematical PhysicsMathematical Physics


 

Numerical AnalysisNumerical Analysis


 

OptimizationOptimization



Section Mathematical PhysicsSection Mathematical Physics 

15 15 ftefte staff, 18 PhD students, research topics:staff, 18 PhD students, research topics:



 

Partial differential equationsPartial differential equations


 

Inverse modeling and data assimilationInverse modeling and data assimilation


 

High performance computingHigh performance computing



Research topic Research topic 
Inverse modeling and Data assimilationInverse modeling and Data assimilation



 

Staff members: Arnold Staff members: Arnold HeeminkHeemink, Martin , Martin VerlaanVerlaan, , 
RemusRemus HaneaHanea



 

PostPost--docs: Nils van docs: Nils van VelzenVelzen, , MuhammedMuhammed UmerUmer AltafAltaf


 

6 PhD students 6 PhD students 


 

Main applications in reservoir modeling, coastal sea Main applications in reservoir modeling, coastal sea 
modeling and air pollutionmodeling and air pollution



 

OpenDAOpenDA is used as programming environmentis used as programming environment


 

Corporation with Corporation with DeltaresDeltares, , VORTechVORTech, TNO, Shell, TNO, Shell
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Model reduction with application to Model reduction with application to variationalvariational data data 
assimilation: An ensemble approach to assimilation: An ensemble approach to 

variationalvariational data assimilationdata assimilation 

(based on M.U. (based on M.U. AltafAltaf, M , M VerlaanVerlaan, A.W. , A.W. HeeminkHeemink, , 
International Journal on Multi Scale Computational International Journal on Multi Scale Computational 

Engineering, 2009)Engineering, 2009)
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Strong constraint Strong constraint variationalvariational data assimilationdata assimilation 

State space modelState space model

The (non linear) physics:The (non linear) physics:

where X is the state, p is vector of uncertain parameters, f where X is the state, p is vector of uncertain parameters, f 
represents the (numerical) model represents the (numerical) model 

The measurements:The measurements:

where M is the measurement matrix where M is the measurement matrix 
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Strong constraint variational data assimilation Strong constraint variational data assimilation 

If we solve the uncoupled system:If we solve the uncoupled system:

where F(k) is the tangent linear model,where F(k) is the tangent linear model,
the gradient of the criterion can be computed by:the gradient of the criterion can be computed by:

Very efficient in combination with a gradientVery efficient in combination with a gradient--based optimization scheme. based optimization scheme. 
BUT: we need the adjoint implementation!BUT: we need the adjoint implementation!
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A POD model reduction approach to data A POD model reduction approach to data 
assimilation: The linear case assimilation: The linear case 

Consider the q dimensional sub space:Consider the q dimensional sub space:

And project the original model onto this sub space:And project the original model onto this sub space:

We now have an explicit low dimensional (approximate) system We now have an explicit low dimensional (approximate) system 
description of the model variations including its description of the model variations including its adjointadjoint
The sub space can be determined by computing the The sub space can be determined by computing the 
EOF (Empirical Orthogonal Functions) of an ensemble EOF (Empirical Orthogonal Functions) of an ensemble 
of model simulationsof model simulations
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The nonlinear caseThe nonlinear case

We now have to determine:We now have to determine:

For every column l of P we haveFor every column l of P we have

We do not need the tangent linear approximation!We do not need the tangent linear approximation!
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Parameter estimation problemsParameter estimation problems



 

Parameters are included in the original state vectorParameters are included in the original state vector


 

The parameter space is not reduced so the reduced state The parameter space is not reduced so the reduced state 
has dimension q+N, where N is the number of parametershas dimension q+N, where N is the number of parameters



Re-parameterization

High-order Model Simulation

Low-order Model Simulation

Gradient Calculation

Reduced Objective Function 
Calculation

Initial Parameters

Objective Function Calculation

Converged? Done

Building of The Low-order Model

Converged?

Low-order Adjoint Model Simulation

Sup Optimal Parameters

Parameters Update

Snapshots Simulation

Presenter
Presentation Notes
When we simulate reduced-order reservoir model with the same permeability as the one used for snapshots simulation we obtain almost identical states, as long as a sufficient fraction of relative importance was preserved.  However if we strongly altered the permeability field and therefore the structure of the states, the states of the original model are  the reduced-model are worse represented by the reduced-model. Because it is not possible to specify priori the validity of the reduced-order model, we use the nested approach in the development of the optimization approach.
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Some remarksSome remarks



 

Very efficient in case the simulation period of the ensemble of Very efficient in case the simulation period of the ensemble of 
model simulation is very small compared to the calibration model simulation is very small compared to the calibration 
periodperiod



 

For some iterations the reduced model can be the same and For some iterations the reduced model can be the same and 
only the residuals have to be updatedonly the residuals have to be updated



 

Not very sensitive to local minimaNot very sensitive to local minima


 

Will not find the exact minimum of the original problemWill not find the exact minimum of the original problem


 

Balanced truncation takes in account the amount of Balanced truncation takes in account the amount of 
measurement information that is available: It is not efficient tmeasurement information that is available: It is not efficient to o 
include model in the model that are not observed. However include model in the model that are not observed. However 
this requires the this requires the adjointadjoint..
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Application to the calibration of a numerical tidal modelApplication to the calibration of a numerical tidal model



11/24/201111/24/2011 1515

First some experiments with generated data (noise free)First some experiments with generated data (noise free)

Colors indicate depth parametersColors indicate depth parameters
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

 

Based on shallow water equationsBased on shallow water equations



 

Grid size: 1.5Grid size: 1.5’’ by 1.0by 1.0’’ (~2 km)(~2 km)



 

Grid dimensions: 1120 x 1260 Grid dimensions: 1120 x 1260 

cellscells



 

Active Grid Points: 869544Active Grid Points: 869544



 

Time step: 2 minutesTime step: 2 minutes



 

8 main constituents8 main constituents





DCSM(DCSM(WaterWater level time serieslevel time series))



Amplitude and Phase of harmonically analyzed constituent M2 Amplitude and Phase of harmonically analyzed constituent M2 



Experiment with field dataExperiment with field data



 

Parameter: DepthParameter: Depth


 

Calibration run: Calibration run: 28 Dec 2006 to 30 Jan 200728 Dec 2006 to 30 Jan 2007


 

Measurement data: Measurement data: 01 Jan 2007 to 30 Jan 200701 Jan 2007 to 30 Jan 2007


 

Includes two springIncludes two spring--neap cyclesneap cycles


 

Assimilation Stations: Assimilation Stations: 3535


 

Validation Stations: Validation Stations: 1515


 

Ensemble of forward model simulations for a period of Ensemble of forward model simulations for a period of 
four days (four days (01 Jan 2007 to 04 Jan 200701 Jan 2007 to 04 Jan 2007))



DCSMDCSM


 

Divide model area in 4 sub domains + 1 Divide model area in 4 sub domains + 1 
overall parameteroverall parameter



 

No. of snapshots: 132 (Every three No. of snapshots: 132 (Every three 
hours)hours)



 

24 POD modes are required to capture 24 POD modes are required to capture 
97% energy97% energy



 

Same POD modes are used in 2Same POD modes are used in 2rdrd 

iterationiteration



 

Initial RMS: 25.7 cm



 

After 2rd iteration: 14.9 cm



 

Improvement :  42%
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DCSMDCSM(Validation(Validation results)results)



 

Similar improvement as in Similar improvement as in 
the case of assimilation the case of assimilation 
stationsstations



With initial depth With initial depth After calibration 

Tidal vector of constituent M2 near Dutch coast



Computational CostComputational Cost

Estimation 5 parameters, calibration period 1 month: Estimation 5 parameters, calibration period 1 month: 
Number of simulations of 1 month 4.7, reduction criterion Number of simulations of 1 month 4.7, reduction criterion 
42% (2 iterations, no model update in second iteration)42% (2 iterations, no model update in second iteration)
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Conclusions Conclusions 



 

The adjoint implementation can be avoided using The adjoint implementation can be avoided using 
model reductionmodel reduction



 

The algorithm is of the ensemble typeThe algorithm is of the ensemble type


 

Efficiency MRVAR is very problem dependent, but Efficiency MRVAR is very problem dependent, but 
extremely good for tidal calibration problemsextremely good for tidal calibration problems



 

More research is neededMore research is needed
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