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Overview

> The Mathematical Physics group in Delit

> Adjoint-free variational data assimilation:
An ensemble approach to variational data
assimilation



Delft Institute off Applied Mathematics

In total 60 fte staff, 45 PhD students, 6 Sections:

> Analysis

Probability

Statistics
Mathematical Physics
Numerical Analysis
Optimization
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Section Mathematical Physics

15 fte staff, 18 PhD students, research topics:

> Partial differential equations
> Inverse modeling and data assimilation
> High performance computing



Research topic
Inverse modeling and Data assimilation

Staff members: Arnold Heemink, Martin VVerlaan,
Remus Hanea

Post-docs: Nils van Velzen, Muhammed Umer Altaf
6 PhD students

Main applications in reservoir modeling, coastal sea
modeling and air pollution

OpenDA Is used as programming environment
Corporation with Deltares, VORTech, TNO, Shell



Model reduction with application to variational data
assimilation: An ensemble approach to
variational data assimilation

(based on M.U. Altaf, M Verlaan, A.W. Heemink,
International Journal on Multi Scale Computational
Engineering, 2009)
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Strong constraint variational data assimilation

State space model

The (non linear) physics:

where X Is the state, p IS vector of uncertain parameters, f
represents the (numerical) model

The measurements:

where M Is the measurement matrix
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Strong constraint variational data assimilation

If we solve the uncoupled system:

where E(k) Is the tangent linear model,
the gradient ofi the criterion can be computed by:

Very efficient in combination with a gradient-based optimization scheme.
BUT: we need the adjoint implementation!

11/24/2011 3



A POD model reduction appreach to data
assimilation: The linear case

Consider the g dimensional sub space:

And project the original model onto this sub space:

We now have an explicit low dimensional (approximate) system
description of the model variations including its adjoint

The sub space can be determined by computing the

EOFE (Empirical Orthogonal Eunctions) ofi an ensemble

ofi medel simulations
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The nonlinear case

We now have to determine:

For every columni | of P we have

\We do noet need the tangent linear approximation!



Parameter estimation problems

> Parameters are included in the original state vector

> The parameter space Is not reduced so the reduced state
has dimension g+N, where N is the number of parameters
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| Re-parameterization |

!
| Initial Parameters |

v
| High-order Model Simulation |

| Objective Function Calculation |

ConveLrged?\

Snapshots Simulation
Building of The Low-order Model

Low-order Model Simulation
Low-order Adjoint Model Simulation

Gradient Calculation
Parameters Update

Reduced Objective Function
Calculation

Converged?

Sup Optimal Parameters


Presenter
Presentation Notes
When we simulate reduced-order reservoir model with the same permeability as the one used for snapshots simulation we obtain almost identical states, as long as a sufficient fraction of relative importance was preserved.  However if we strongly altered the permeability field and therefore the structure of the states, the states of the original model are  the reduced-model are worse represented by the reduced-model. Because it is not possible to specify priori the validity of the reduced-order model, we use the nested approach in the development of the optimization approach.


Some remarks

> Very efficient in case the simulation period of the ensemble of
model simulation Is very small' compared to the calibration
period

> For some iterations the reduced model can be the same and
only the residuals have to be updated

> Not very sensitive to local minima
> Will net find the exact minimum of the original problem

Balanced truncation takes in account the amount of
measurement information that is available: It Is not efficient to
Include model in the model that are not observed. However
this requires the adjoint.
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Application to the calibration ofi a numerical tidal model
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First some experiments with generated data (noise free)
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The POD modes capture energy in case of 200 snapshots
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Cost function versus energy levels

—
c
Q
—
(&)
-
3
TR
-—
wn
o
)

Quter lterations

11/24/2011




Validation Stations
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Reduction in Cost function for 10 days
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Assimilation Results for 10 days

| |
I Background
I [ Quter Iteration
[ ] 2" Outer Iteration
[ 3" Outer Iteration ||
Bl 4™ Outer Iteration

£
&,
LLJ
0
=
o

sthd denh ostd brk

11/24/2011




E
®
=
@
| -
o
g
=

11/24/2011

Water level at Ostende
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Reduced Estimation
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DCSM Area and Assimilation Stations

Based on shallow water equations
Grid size: 1.5 by 1.0" (=2 km)
Grid dimensions: 1120 x 1260
cells

Active Grid Points: 869544

Time step: 2 minutes

8 main constituents



Computational grid hear Dutch coast
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Amplitude for constituent: M2 (RMSE = 12.5 ¢m) Phase for constituent: M2 (RMSE = 14.6 )
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Experiment with field data

Parameter: Depth

Calibration run: 28 Dec 2006 (o 30 Jan 2007
Measurement data: 01 Jan 2007 to 30 Jan 2007
Includes two spring-neap cycles

Assimilation Stations: 55

Validation Stations: 15

Ensemble of forward model simulations for a period of
ieurdays (04 Jan 2007 16104 Jan 20017
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DCSM

The POD modes capture energy (2nd outer iteration)

20
No. of modes

Initial RMS: 25.7 cm
After 2" ijteration: 14.9 cm

Improvement : 42%

Divide model area in 4 sub domains + 1
overall parameter

No. of snapshots: 132 (Every three
hours)

24 POD modes are required to capture
97% energy

Same POD modes are used in 2@
iteration

4 subdarmains
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Water level at Ostende on 20-Dec-1997
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DCSM(VaIidation results)

DCSM Area and validation Stations

RMSE(validation)
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Similar improvement as In
the case of assimilation
stations




VD =30.2cm) Tidal Vector for constituent: M2 (Mean VD = 9.6 cm)

Tidal Vector for constituent: M2 (Mean
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Computational Cost

Estimation 5 parameters, calibration period 1 month:
Number of simulations ofi 1 month 4.7, reduction criterion
42% (2 iterations, no model update in second iteration)
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Conclusions

The adjoint Implementation can be aveided using
model reduction

The algorithm Is of the ensemble type

Efficiency MRVAR Is very problem dependent, but
extremely good for tidal calibration problems

More research Is needed
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