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No explicit need for state covariances

 3DVar and 4DVar need a good error
covariance of the prior state estimate:
complicated

 The performance of Ensemble Kalman filters
relies on the quality of the sample covariance,
forcing artificial inflation and localisation.

e Particle filter doesn’t have this problem, but...



Standard Particle filter

Not very efficient !




A closer look at the weights |

Probability space in large-dimensional systems is
‘empty’: the curse of dimensionality
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Exploring the proposal density

For each particle at time n-1 draw a sample from the proposal
transition density g, to find:
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Which can be rewritten as:
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with weights




Particle filter with
proposal transition
density




Equivalent weights |

1. We know:
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2. Write down expression for each weight ignoring g for now:
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3. When H is linear
for each particle.

this is a quadratic function in x;"
Otherwise linearize.




Equivalent weights Il

5. Set a target weight that 80% of the particles can reach.

target weight

weight contour

Determine ¢ at crossing of line with target weight contour in:

v = f(a]) +ak (y" — Hf(«]™"))

with

K =QH"(HQH" + R)™!




Barotropic vorticity equation

256 X 256 grid points
600 time steps

Typically g=1-3
Decorrelation time scale=
= 25 time steps

Observations
Every 4" gridpoint
Every 50" time step

24 particles
sigma_model=0.03
sigma_obs=0.01
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Rank histogram:
How the truth ranks in the ensemble
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Equivalent Weights Particle Filter

_ p(y|z:) p(x;)
p(y) qlws)

Recall: w;

Assume

—2log (p(ylz:)p(x:) o< (x; —x0)" P (25 — x0)
+(y— H(z:))' R (y — H(x,))

Find the minimum for each particle by

perturbing each observation, gives ng’DVAR




High-probability-weights Particle Filter
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So, the idea Is to draw from N(O,(Si) and the weights come
out as drawn from N(0O,S)).




Example: one step, with equal
weight ensemble at time n-1

* 400 dimensional system, Q = 0.5
» 200 observations, sigma = 0.1
10 particles
 Four Particle filters:
- Standard PF
- ‘Optimal’ proposal density
- Almost equal weight scheme
- Gaussian-peak weight scheme
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Performance measures

1

Effective ensemble size Neff — N 5

2im1 W;
Filter: Squared difference from truth: Effective ensemble size:
PF standard error 1.3931 1
PF-'optimal’ error 0.10889 1
PF-Almost equal error 0.073509 8.8
PF-Gaussian Peak error 0.083328 9.4

‘Optimal’ proposal density has no pdf information,
new schemes performing well.



Issues in high dimensions

Assume variables are iid Gaussian:

1 LI
p(aj) — Wexp {—;3’3@}

Along each if the axes it looks
like a standard Gaussian:




However, the probability mass as function of the distance to the
centre is given by:

mass(r) = e~ ¢! /dQ
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In distribution

Fisher has shown

So we find

Zﬂ?' Xd
1=1
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Importance Ring

Experimental evidence, sums of d squared random numbers:
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Given this what do these
efficient particles represent???

/7 )



Nonlinear observation impact

Degrees of freedom when prior is non-Gaussian
Sensitivity matrix when prior is non-Gaussian
Relative entropy

Mutual information

New measures...



A few conclusions

1. Particle filters wit
 solve for fully non
 very flexible, muc

N proposal transition density:
Inear posterior pdf

N freedom

e scalable => high-dimensional problems
o extremely efficient
e But what do the particles represent?

2. What information
covariances?

IS present in ensemble

3. Non-linear observation impact needs non-linear

DA method



