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Particle filter

Use ensemble

with the weights.



No explicit need for state covariances

• 3DVar and 4DVar need a good error 

covariance of the prior state estimate: 

complicated

• The performance of Ensemble Kalman filters • The performance of Ensemble Kalman filters 

relies on the quality of the sample covariance, 

forcing artificial inflation and localisation.

• Particle filter doesn’t have this problem, but… 



Standard Particle filter

Not very efficient !



A closer look at the weights I

Probability space in large-dimensional systems is 

‘empty’: the curse of dimensionality

u(x1)

u(x2) T(x3)



Exploring the proposal density
For each particle at time n-1 draw a sample from the proposal
transition density q, to find:

Which can be rewritten as:

with weights

Likelihood weight Proposal weight



Particle filter with 

proposal transition

density



Equivalent weights I

1. We know:

2. Write down expression for each weight ignoring q for now:2. Write down expression for each weight ignoring q for now:

3. When H is linear this is a quadratic function in xi
n

for each particle. Otherwise linearize.



^yn

Equivalent weights II

5. Set a target weight that 80% of the particles can reach.

f(xi
n-1)

x n

X

target weight
^yn xi

n

X

Determine     at crossing of line with target weight contour in:

with

weight contour



Barotropic vorticity equation

256 X 256 grid points
600 time steps
Typically q=1-3
Decorrelation time scale= 
= 25 time steps

Observations 
Every 4th gridpoint
Every 50th time step

24 particles
sigma_model=0.03 
sigma_obs=0.01



Posterior weights



Rank histogram:

How the truth ranks in the ensemble



Equivalent Weights Particle Filter

Recall:

Assume

Find the minimum for each particle by 
perturbing each observation, gives



High-probability-weights Particle Filter

So, the idea is to draw from N(0,Qi)  and the weights come
out as drawn from N(0,Si).

^



Example: one step, with equal 

weight ensemble at time n-1

• 400 dimensional system, Q = 0.5
• 200 observations, sigma = 0.1
• 10 particles• 10 particles
• Four Particle filters:

- Standard PF
- ‘Optimal’ proposal density
- Almost equal weight scheme
- Gaussian-peak weight scheme



Standard PF ‘Optimal’

Equivalent High probability



Performance measures

Filter:                     Squared difference from truth:          Effective ensemble size:

Effective ensemble size 

Filter:                     Squared difference from truth:          Effective ensemble size:

PF standard error               1.3931 1
PF-’optimal’ error                0.10889 1
PF-Almost equal error        0.073509 8.8
PF-Gaussian Peak error    0.083328 9.4

‘Optimal’ proposal density has no pdf information, 
new schemes performing well.



Issues in high dimensions

Assume variables are iid Gaussian:

Along each if the axes it looks 
like a standard Gaussian:



However, the probability mass as function of the distance to the
centre is given by:

d=100 d=400 d=900 The so-called
Important Ring

r in standard deviation

Important Ring



Why?

In distribution

Fisher has shown

So we find



Importance Ring

Experimental evidence, sums of d squared random numbers: 

r

d



Given this what do these

efficient particles represent???



Nonlinear observation impact

• Degrees of freedom when prior is non-Gaussian

• Sensitivity matrix when prior is non-Gaussian

• Relative entropy

• Mutual information• Mutual information

• New measures…



A few conclusions

1. Particle filters with proposal transition density:
• solve for fully nonlinear posterior pdf
• very flexible, much freedom
• scalable => high-dimensional problems
• extremely efficient
• But what do the particles represent?• But what do the particles represent?

2. What information is present in ensemble 
covariances?

3. Non-linear observation impact needs non-linear 
DA method


