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Outline 

  Results from the TOPAZ pilot reanalysis 
(2003-2008)  

  EnKF with Gaussian anamorphosis 
  Iterated EnKF for highly non-linear models 
  Relevant “Tier 1” R&D activities in MyOcean  



Ensemble Kalman filtering 

Forecast Analysis 

Observations 

1.  Initial uncertainty 

2.  Model uncertainty 

3.  Measurement uncertainty 
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The HYCOM model at NERSC 

  3D numerical ocean model 
  Hybrid Coordinate Ocean model, 

HYCOM (U. Miami) 
  Hybrid vertical coordinate 

  Isopycnal in the interior 
  Z-coordinate at the surface 
  TOPAZ4 uses 28 layers 

  Coupling to sea ice model  
  EVP dynamics 
  Semtner Thermodynamics  

  Data assimilation: EnKF 
  3D State variables (u,v,T,S,dp) 
  2D State variables (ub,vb,pb,ice...) 
  Why the EnKf? 



EnKF Correlations, SST 

15th June 2008 24 Dec. 2008 



Why dynamic Data Assimilation in coupled  
ice-ocean model? 

Also see Lisæter et al. Oc. Dyn. 2003 



Conservation of properties 
Evensen (2003) 

 Update equation 
 Xa

n = Xf
n + Kn (Yn – H(Xf

n) )  
 Factorize by Xf
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 T: Transform matrix (size 100 x 100), also sometimes called X5  

Ensemble X,  anomalies X’ = X - <X> 

Kalman gain: 
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The transform T ensures conservation of linear properties 
(geostrophic balance), but not the others.  



The TOPAZ 
system 

  DEnKF, asynchronous 
  100 members 
  Local analysis (~90 km radius) 

  Model state: 
  3D variables (u,v, T, S, d) 
  2D variables (ice, …) 
  800x880x148 = 104 million variables 

  Observations: 
  Sea Level Anomalies (CLS) 
  SST (NOAA, then OSTIA) 
  Sea Ice Concentr. (AMSR, NSIDC) 
  Sea ice drift (CERSAT) 
  T/S profiles (Argo, ITPs, field exps.) 
  400.000 observations per week 



Computations  
DEnKF 100 members 

  Ensemble Forecast 
  2500 CPU hours / cycle 
  Embarrassingly parallel 
  100x 133 CPU 11 min jobs 
  Each job requires 400 Mb 

  MPI parallelization 

  Analysis 
  20 CPU hours / update 
  6 datasets simultaneously 
  One 20 CPU 1h job 
  Memory required 1 Gb 

  MPI parallelization 
  HPC Machine: 
  Cray XT4, Installed 2008 

  5500 CPUs, 55 Tflop/s 
  1375 nodes (quad-core) 
  1-4 Gb per node 



Avoiding ensemble collapse? 

  Initial error 
  Interannual variability + ensemble run with model errors 

  Model errors: 
  Winds, air temperature,  
  e-minus-p, cloud cover,  
  Static parameters:  

  mean SSH, mean SST, sea ice rheology parameters (stress tensor) 

  Remediation of EnKF shortcomings: 
  Inflation: 1% 
  Moderation of observations  

  Adaptive pre-screening of observations (if pdfs do not match: stretch!) 
  Exaggerate obs errors x2 for anomalies update only 



Track-SLA statistics 

R-factor 
Bias estimation 

Gulf Stream Gulf Stream Extension 

Sub-Equatorial 



Reanalyzed sea surface 
heights in 2007 (daily) 

One year 
of SSH 
from 

TOPAZ 



Independent data: surface 
drifters 



Bias 
estimation 



Not observed: Ice thickness 

Independent 
satellite data  



Oceanographic Validation  



Water Transport across sections 

Svinøy Section 
Net flux 

Barents Sea Opening 
Net flux 



Conclusion 

  Reanalysis publicly available on 
http://topaz.nersc.no and http://myocean.eu.org  

  Code on https://svn.nersc.no/enkf 
  The TOPAZ4 system is running a 20-years coupled 

ice-ocean reanalysis (ongoing)  
  No ensemble collapse or innovation drift 
  No assimilation “shocks” in transport time series 

  Allows assimilation of various data types  
 Based on Monte-Carlo framework 
  Identified sources of error (Bayesian philosophy) 
  Fully multivariate method 



Weather IN the oceans: 
Mesoscale physical-ecosystem interactions 

  Eddies can make local 
deserts or local oases of 
marine life  

  Hansen, C., A. Samuelsen: 
Influence of horizontal model grid 
resolution on the simulated primary 
production in an embedded primary 
production model in the Norwegian 
Sea: Journal of Marine Systems. Vol. 
75, Issue: 1-2, pp 236-244, 2009.  

MERIS ocean colour data 

C. Hansen 



Ocean ecosystem 
anamorphosis – EnKF (E. Simon) 

  Data: 
  Satellite, ocean colour 
  SeaWIFS 

  Problem 
  Coupled 3-dimensional 

physical-biological model 
  High-dimensional 
  Non-Gaussian variables 



Non-Gaussian variables 

  Asymmetric distributions (right skewed) 
  Positive valued 



Gaussian anamorphosis 

  Univariate transform  
  to Gaussian. 

  More adequate for 
linear analysis 

  Idea taken from 
Geostatistics 
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Why is Gaussianity important? 

Standard 

  Makes scatterplots more linear 
  Reduces the impact of outliers 
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Estimating loss to carnivores 

Wrong direction! 

Simon & Bertino, JMS 2011 



The iterated EnKF for strongly 
non-linear systems 

P. Sakov, D. Oliver, L. Bertino 
Under final (?) review in MWR 







The Iterative EnKF 





























Benefits of Monte Carlo methods  

  Sakov, Oliver & Bertino, subm. MWR 

Stronger non-linearity ->  

Direct insertion 

RMS 
errors 





Relevant tasks in MyOcean2 

  Task 19.3.4 Assimilation of new types satellite observations 
  (a) Assimilation of sea-ice properties (NERSC, Mercator, METNO, DMI). A strategy will 

be derived for combined assimilation of ice concentrations and thickness as from 
CryoSAT. Different anamorphic transformations will be tested (static, variable in time or 
space), the observation operator for sea-ice concentrations will be tested as a choice 
for the observations. Diagnostics to be checked: scatterplots, representers. The 
multivariate impact on thickness, surface temperature and salinity will be monitored. 



Google image 
“Sangoma” 

Painless assimilation! 

We have 
nicer bugs! 


