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Covariance localization

Need for covariance localization

I In ensemble assimilation schemes, the model error covariance P is represented by
an ensemble of model states x(k), k = 1, . . . , N (〈〉̇ is the ensemble average).

P = 〈(x− 〈x〉)(x− 〈x〉)T 〉 = XXT

I As N increases convergence is relatively slow (N−1/2) → sampling error.

I This sampling error leads to unrealistic long-range correlations.

I Covariance localization suppresses these long-range correlations based on the
horizontal distance based on a specified length-scale.



Global constraints and conservation

I Localization splits the assimilation problem into a series of local optimizations

I Global assimilation schemes have no problem in respecting linear conservation

I Non-linear constraints can sometimes be transformed into linear constraints by
a careful transformation model variable. Example

• Layered models: salinity Si and layer thickness hi, then :∑
i

∫
Ω

Sihi dx = const

• This conservation property is non-linear if a state vector including Si and
hi

• ... but becomes linear if the state vector includes Sihi and Si (or hi).



Localization

I One can distinguish different localization approaches:

• covariance localization: every single observation point is assimilated se-
quentially and the correction are filtered by a localization function. (less
suited for parallel processing and the domain localization).

• domain localization: the state vector is decomposed into sub-domains
(e.g. single grid points or vertical columns) where the assimilation is per-
formed independently. Such algorithm are easily applied to parallel com-
puters.

I Conservation of the global property is lost if the assimilation is performed locally

I The conservation requires a coupling of a model grid points which is filtered-out
by the localization.

I Similar difficulty: non-local observation operator



Method

I We propose a assimilation scheme which is local and can satisfy global conser-
vation properties and non-local observation operators.

I In essence:

• Based on covariance localization

• Localize ensemble covariance matrix (by using an element-wise matrix prod-
uct)

• Modify this localized covariance matrix to so that the uncertainty of the
total amount of the conserved quantity is zero

• One recovers the original Kalman filter analysis if the covariance does not
have spurious long-range correlation.

• Parallel algorithm



Solver

I Matrices are not formed explicitly, but as an “operator”

Pc = (I− hhT )(ρ ◦P)(I− hhT ) (1)

where hT (xa − xf ) = 0

I Conjugate gradient algorithm as solver for these systems:(
HPcH

T + R
)−1

y = b (2)

where y and b two vectors in the observation space.

I Preconditioner can be:

• Solution without localization Pc ∼ P

• Solution without ensemble (3D-Var) Pc ∼ ρ



Variants

I Ensemble mean: standard Kalman Filter update (but with modified error covari-
ance)

xa = xf + K(yo −Hxf ) (3)

I Full ensemble:

• Either use perturbed observations yo(k) (variant “pert”)

xa(k) = xf (k)
+ K(yo(k) −Hxf (k)

) (4)

• Project analysis error covariance onto a subspace (variant Pc)

• Project approximated analysis error covariance onto a subspace (variant
SST ). For this variant: no rotation if R→∞



Test case

Kuramoto-Sivashinsky equation

I Equations:

∂tv = −∂2
xv − ∂4

xv − v∂xv (5)

I Periodic domain: L = 32π with 128 grid points

I Time-step: ∆t = 1/4

I ETDRK4 (Exponential Time Differencing fourth-order Runge-Kutta)

I Conservation:

d

dt

∫ L

0

v dx = 0 (6)
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Figure 1: Solution of the KS equation (without assimilation)



Assimilation test cases:

non-conservative conservative

covariance localization CL CL-adj

perturbed observation EnKF-pert CEnKF-pert

Localized EnKF without per-
turbed obs. variant “Pc”

LEnKF-Pc CLEnKF-Pc

Localized EnKF without per-
turbed obs. variant “SST”

LEnKF-SST CLEnKF-SST



Assimilation setup

I Classical twin experiment

I Every 8th grid point is observed (with an error variance of 0.1) at every 10 model
time steps

I The model with assimilation for 1000 time steps

I The experiment is repeated 1000 times and RMS errors relative to the true
solution are averaged.

I Using different localization length-scale and inflation factors



Results
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I RMS error between the model run
with assimilation and true solution for
different schemes

I x-axis: localization length-scale

I y-axis: inflation factors

I white region where model is unstable



Optimal parameters

L inflation mean RMS std of mean RMS

CL 21 1.03 0.71375 0.00271
CL adj 21 1.03 0.68624 0.00268
LEnKF-pert 21 1.07 0.66267 0.00570
CLEnKF-pert 21 1.07 0.63493 0.00609
LEnKF Pc 25 1.05 0.64253 0.00364
CLEnKF Pc 25 1.05 0.59395 0.00386
LEnKF SST 25 1.05 0.64078 0.00513
CLEnKF SST 25 1.05 0.59953 0.00452

I Lowest RMS for different assimilation schemes and corresponding parameters

I Methods with conservation always better than without

I CLEnKF Pc and CLEnKF SSc very similar, but CLEnKF Pc slightly better



Minimal model for sea ice and salinity with conserva-
tion

I Assess these schemes for a multivariate model

I Minimal model for sea ice and salinity where the amount of “freshwater” (or
salt) is conserved.

I Integral of a function f (of the model parameter) over a closed domain remains
constant over time:

d

dt

∫
Ω

fdx = 0 (7)

I The velocity (v) for salinity (S) is provided using the Kuramoto-Sivashinsky
equation:

∂tv = −∂2
xv − ∂4

xv − v∂xv−g∂xh (8)



Governing equations

I The flow v is not “incompressible” as it varies with x. Thus we use also the
variable h, representing the height of the mixed layer.

∂t(hS) + ∂x(vhS) = κ∂2
x(hS) + µF

∂tc+ ∂x((vc + v)c) = F

where vc is the velocity of the sea ice (constant) and h is governed by:

∂th+ ∂x(hv) = 0

I For a periodic domain Ω, salinity fluxes and ice fluxes cancel after integration
over the whole domain and one obtains:

d

dt

∫
Ω

(hS − µc) dx = 0



I Free running simulation of the coupled multivariate model

I Solution is strongly dominated by the chaotic behavior of the velocity equation



Results
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I Every second ice grid point is ob-
served

I Average RMS error between the
model run with assimilation and the
true solution for different schemes
and parameters

I High inflation values lead to unrealis-
tic results for “CL” and “CL-adj”

I Results appear noisy but even af-
ter increasing the number of exper-
iments, these small-scale variations
remained and were stable



Summary

L inflation mean RMS std of mean RMS

CL 17 1.00 0.18362 0.00070
CL adj 7 1.02 0.18228 0.00047
LEnKF-pert 17 1.02 0.17444 0.00063
CLEnKF-pert 17 1.02 0.17254 0.00064
LEnKF Pc 17 1.02 0.18689 0.00080
CLEnKF Pc 17 1.02 0.18549 0.00080
LEnKF SST 17 1.02 0.17244 0.00064
CLEnKF SST 17 1.02 0.17064 0.00065

Table 1: Lowest RMS for different assimilation schemes and corresponding parameters

I Suprisingly Pc is not better than CL

I Error space rotation seem to degrade results

I Best results with method CLEnKF SST



Conclusions

I New assimilation scheme which is formulated globally (i.e. for the whole state
vector)

• where spurious long-range correlations can be filtered out

• global conservation properties can be enforced

• non-local observation operators can be used (e.g. assimilation of observa-
tion representing an average)

I Tests with Kuramoto-Sivashinsky show benefit of this approach compared to
the traditional covariance localization scheme where observations are assimilated
sequentially

I Even with an ad-hoc step enforcing conservation

I Beneficial also for multivariate models with conservation constraint relating dif-
ferent model variables

I The most consistent variant was CLEnKF SST



Acknowledgments

This work was funded by the SANGOMA EU project (grant FP7-671 SPACE-2011-1-
CT-283580-SANGOMA), by the project PREDANTAR (SD/CA/04A) from the federal
Belgian Science policy and the National Fund for Scientific Research, Belgium (FNRS-
F.R.S.).

http://www.data-assimilation.net/
http://www.belspo.be/belspo/fedra/proj.asp?l=en&COD=SD/CA/04A

