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Data assimilation methods



What is data assimilation ?

Model Observations

Data Assimilation

Analysis



Outline

» Why data assimilation 7
» Basic concepts
» Sequential assimilation

e Nudging

e Successive corrections

Optimal Interpolation
3D-Var

Kalman filter

e Kalman smoother
» Non-Sequential assimilation

e 4D-Var

e Representer method



Goal of data assimilation

» Calibration: choose model parameters coherent with observations.
Example: linear regression.
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» Improve the model accuracy with help of observations
» Data assimilation provides also a framework to identify model errors

> State estimation: determine the "best” (e.g. the most probable) state of a
system



Errors and uncertainty

» Neither the model nor the observations are perfect.
» Both have errors (uncertainty).
» error = systematic error (bias) + random error

» How can we represent uncertainty?



Ways to represent uncertainty

» For Gaussian-distributed errors.

e Error bars (for scalar variables) (mean,
standard deviation) or confidence inter-
val

e error covariance, example: x = (11, T5)
Pi P
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( Py Po

e Error modes (EOF: empirical orthogonal
functions)

e Graphical representation: ellipsoid for

more than one variable (vectors) (mean,
error covariance): xP7!x =1

» ensemble of possible values

» probability density function
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Errors in an ocean model
Errors in an ocean model might be due to
» errors in initial conditions

» errors in open ocean boundary conditions

» errors in atmospheric fields (wind, air temperature, ...

» errors in bathymetry

> inappropriate parameterizations
» discretization error

> ...

What about model errors in other disciplines?



Errors in your observations

Errors in your observations might be due to
» instrumental error (bias, drift, limited accuracy and precision)
Observations might not represent exactly the same as the model variables
» mismatch in resolved scale
» mismatch in resolved processes

> ...



Notation

n scalar number of state variables

m scalar number of observations

N scalar number of ensemble members

k scalar ensemble index k=1,..., N

J scalar cost function

f function model giving the model state vector at the next time step
M matrix n X n | linear (or linearized) model

x//e/t | vector n x 1 | the model forecast/analysis/truth
P//¢ | matrix n x n | error covariance of x//®
S//e | matrix n x N | square root decomposition of P//¢

., vector n X 1 the model error
Q matrix n X n | error covariance of n,,
y° vector m X 1 | observations

€ vector m X 1 | observation error

R matrix m X m | error covariance of y°
H matrix n X m | observation operator
E[] expectation

The superscript / and ¢ refer to forecast and analysis respectively.



Basic concepts

» The state vector x,, at time t,,. For a primitive equation model, its dimension
is about n =5 x 5000 x 20 = 5 10°.

» The dynamical model f,:

Xpi1 = fu(Xn)  [= Myx, + F,, if the model is linear]

Xg = X"

model ~ reality (¢: true):

:L+1 = fn(xiz) + nn

t_ i i
Xg=X +17n

X

» x' is of course unknown for in a real application. The assimilation method do
not require the knowledge of x'.

» The observations:
yo = ha(x}) + €, [=H,x, + e, if the model is linear]
in general: H,, = interpolation to observation grid o variable transformation

€, = instrumental error + representativity error
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Figure 1: For example, an altimetry track and model grid points



Assumptions

» All errors are zero in average (i.e. no bias):
E[n,) = E[n'] = Ele.] =0
» The covariances are known:

iT
Ennmy] = Quww  Emmn’]=
i i1 i
En'n"]=P En,el] =
E[snsf,] =R, 0,

0
0

» Some assimilation methods are optimal if those assumptions are verified.

» If the assumptions are not verified (in particular biased model), the assimilation
schemes can still given useful results.

» For some assimilation method the error covariance matrix of the model state x
is assumed to be known:

El(x—x") (x— Xt)T] =P



Consistency check

» Innovation vector d,, (time index n is dropped in the following):

d = y"—fo:y"—th—H(xf—xt)
E[d] = 0
E[dd’] = R+HPH”

» HPHT is the error covariance of Hx.

» One can use these relationships to test if the model is unbiased and if the error
covariances are consistent.

. . . —1/2 . . .
» Normalized innovation z = (R + HPHT) /2 4 should follow a Gaussian distri-
bution with zero mean unit covariance.

» Verification statistics:
2

tr(zz") = X3,
The left-hand side of the previous equation follow is a sum of m Gaussian dis-
tributed variables squared. It follows thus a x? distribution with m degrees of
freedoms. This distribution has a mean of m and a variance of 2m (Dee, ).



» One can also show that ( , ):
E[(Hx" - Hx") (y°— Hx")] = HP/H"

El(y°-Hx") (y*-Hx")] = R
E[(Hx" - Hx") (y° — Hx")] = HP*H"



Sequential assimilation

Initialization: x& = x*

Forecast: x/,, = f,(x%)

l

Analysis: x;, | = x£+1 +K, (yZH - hn(x7];+1))

|

» K,: Kalman gain

» Analysis = only unbiased estimation if A is linear



Unbiased linear combination

» Model forecast x/ and observations y° are assumed unbiased
» Linear combination x* should be unbiased too E[x%] = x*

» General form of linear combination

x¢ = Jx/+Ky°

Ex] = JE[X]+K E[y’]
Ex*] = Jx'+KHX'
Ex] = J+KH)X

therefore J + KH = 1. If we choose J =1 - KH,
» Analysis:

x* = (I-KH)x/ + Ky’
x* = xf+K(yO—HXf)



Direct insertion

» Part of the state vector is directly observed (e.g. SST)
» The observed part of the state vector is replaced by the observations.
Xujti) = Yo
Xy, = Xj;j on non-observed grid points

» The ith observation corresponds to the j'(i) element of the state vector

» The observation operator will be one for the observed elements of the state vector
and zero otherwise (H;;); = 1).

x; = x} +H' (y° - x})

» Error in the model are assumed to be much larger than errors of the observations
» Problems

e Updated part of the state vector is inconsistent relative to the part of the
state vector which is not observed.

e Adjustment processes (e.g. geostrophic adjustment creating barotropic
waves, mixing) can degrade the model results



Nudging
» As in direct insertion, a part of the state vector must be directly observed.
» Analysis:
a _f . 0 _ f
Xngr(i) = Xngr(i) T i (ym' an/(z'))
X% = Xf:j on non-observed grid points

nj

» In matrix form:
x? = x! +r,H" (yo — Xfl)

» For a scalar variable: (1/r = relaxation time scale)

Ccll_f = f(z(t) + 7 (y°(t) — 2(t))

Relaxation term is applied at the model time step.
SST Nudging = correction of surface heat flux.

Nudging towards climatology to prevent drift of the model.

vV v v v

Relaxation reduces the model variability.



Example

dx/dt =r (yo — x) (herer=yo =1)

1 T T T

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

time



Demonstration

» A web-application showing the functioning of the Kalman filter is available at
http://www.data-assimilation.net/Tools/AssimDemo/.

» Review of what is a twin-experiment

» Very simple models can be used:

No time variation

The state vector x has two elements (7, xQ)T and there is no time variation:

Xn+1 = Xp (1)

The model matrix M is thus the identity matrix.


http://www.data-assimilation.net/Tools/AssimDemo/

1D advection in periodic domain

The state vector x has four elements and it is subjected to the following dynamics

(nt1) _

x(™ (2)

o O O
o O O
O O = O
O = O O

This simple system would be the result of a 1D advection scheme in a periodic do-
main with a constant velocity. The grid resolution over time step is equal to the velocity.

Without using the web-interface, what would be the model state after the 1st,
2nd,... time step?.



Oscillations

» The state vector x has two elements and it is governed by:

del

o = (3)
d
=2 = o (4)

» The numerical example uses f = 27 with a time step of At = 0.1. One can
show that two successive states are related by:

(D) cos(fAt) sin(fAt) o)
"= ( —sin(fAt) cos(fAt) ) (5)

» What kind of oscillation would these equations describe in the ocean?



Two oscillations

The state vector x has four elements and it is governed by:

00 —a —b
dx 00 —b —a
T ey 0 0 |F

b a 0 0

where a = 27 and b = 7. The eigenvectors and eigenvalues of the model matrix
allows us to find an analytical solution:

Ci, Cy C3 Oy cos(wt)
(t) . Cl CQ —03 —04 sin(wt)
= -Cy Cy =Cy C4 cos(w't)

-Cy C; Oy —0Cs sin(w't)

where w =a +band W' =a —b.



In the numerical example, this equation is solved with a Crank-Nicholson schema

and a time step At =0.1.

Xn+1 — Xp Xn+1 + Xn
-t = A" -
At 2

At At

The model matrix is thus:
M= (I—-2A)7" (T+4LA).

Xni1 = Mx,



Lorenz model

The classical Lorenz model (simplified mathematical model for atmospheric convection)
with 0 = 10, 5 =8/3 and p = 28.

o =oly—2) (7
dy

5 =alp=2)~y (8)
% =axy — Bz (9)

The system is discretized with a Runge Kutta time stepping scheme with At = 0.05.



Nudging demo
» Model: identity x,,11 = %,

e Single observation (Model time steps between observations: 25)
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=25

o Relaxation term acts as low pass-filter (Model time steps between observa-
tions: 1)
http://data-assimilation.net/Tools/AssimDemo/7method=Nudging&model=id&obs_tsteps=1

e Over-fitting of observations if nudging relaxation time-scale is too short
(Model time steps between observations: 1, relaxation time-scale: 2)
http://data-assimilation.net/Tools/AssimDemo/?7method=Nudging&model=id&obs_tsteps=1&nudging.

ts=2
» Model: oscillation

e Based on the default values, try to find a good relaxation time-scale

http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=oscillation

e In which sense would you need to the change the other parameters to
improve the solution with assimilation?


http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=25
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1&nudging_ts=2
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1&nudging_ts=2
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=oscillation

Optimal Interpolation

» The observation operator must be linear

» The error covariance of the model state vector is defined as:

» We assume that P/ is known.

» The Kalman gain is chosen such that the norm of x% —x! is as small as possible:

J(K) = E[(x;, —x,)" W(x}, — x,)] = tr(WP})

» We introduce an error norm with the diagonal matrix W

» The optimal value of K is independent of W

K, = P/H’ (H,P/H? +R,) "



How to derive the Kalman gain?

The analysis is given by:

x* = x/ +K(y°— Hx/) (10)
= (I+KH)x/ +Ky° (11)

The variance of the analysis x* is a function of the gain matrix K:

P*(K) = (I-KH)P/(I-KH)" + KRK" (12)

We want to have the overall smallest possible error on x“.

tr (WP* (K)) = tr (WP/)—2tr (WKHP/)+ tr (WK HP/H'K" )+ tr (WKRK")
(13)
If K is the optimal gain, then a small increment of JK does not modify the total
error variance in the first order of /K.

tr (WP (K + 0K)) — tr (WP* (K)) (14)
= 2tr (WK HP/H" 6K") — 2tr (WP/H"6K") + 2tr (WKRJK")
= 2tr (W [K (HP/H" + R) — P/H"] 0K")



Since the perturbation 0K is arbitrary, the expression inside the brackets has to be
zero.

K — P/H” (HP/H” +R)™ (15)

Error covariance of the analysis

Equation (12) can be expanded into:

P* = P/-KHP/-P/H'K" + K (HP/H" + R) K" (16)
= P/ - KHP/ - P/HTK” + P/H"K” (17)
= P/ - KHP/ (18)

where we used the optimal gain from equation (15).



Optimal Interpolation analysis
» Analysis:
x"=x/ + P/THT(HP'H” + R)™'  (y° — Hx/)

covariance of the i.v. innovation vector
P® = P/ — KHP/

» For scalars: if we want to combine the temperature predicted by a model T},
(0,,) with an observation T, (0,), the analyzed temperature is:



Example

>

Compare behavior of the variable x5 of the model “identity matrix” and “oscil-
lation" .

http://data-assimilation.net/Tools/AssimDemo/?method=0I&model=id
http://data-assimilation.net/Tools/AssimDemo/?method=0I&model=oscillation

Describe the behavior of the Ol scheme if the error correlation of x; and x5 is
0.9 for the model “identity matrix”.


http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=id
http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=oscillation

Figure 2: The observed part of a linear system with 4 state variables: the true state
vector, x!, the analysis x%, the state of the system without assimilation xb (b, back-
ground). The observations y° are extracted from x!. The trajectories x* and x° start

from a wrong initial condition.



Covariances

» P :n xn(n=~~10°). 102 variables to determine and to store !?

» Constraints: fields are generally “smooth”, close to hydrostatic and geostrophic
equilibrium (at sufficiently large scales) and obeying conservation laws,...

» Decomposition of P in variance D and correlation C
P = D'?CD'?

e Correlation length = typical spatial scale of the dominant process

e = “smooth” field

— — | Correlation C




Reduced rank covariance matrices

» Representation of the covariances by the dominant eigenvectors and eigenvalues:

P = E[nn"] (19)
P=LDL” L:nxr, D:rxr (20)

In general » =~ 10 — 100.
» Ensemble representation: x*) k=1,... N
P=<(x— <x>)(x— <x>) >=XX" <>= ensemble average
In general slower convergence (N~%/2) if N increases. N ~ 100 — 500.

» Consequence: The model error ) and the correction of the state vector x? — x/
belong to the vector subspace spanned by the columns of L (or X).

» For the analysis, P = LDL” doesn't have to be formed explicitly
K=L(D'+L'H'R'HL) L"H'R"

» But a reduced-rank covariance introduces an unphysical long-range correlation



Balanced covariances

» Conservation of e.g. salinity: [ Sd*z = const.
Geostrophic equilibrium: v = p(%fez x Vpn(T, S, ()

» General form (linear constraints):

Cx=const. = CP =0

» Example: ). cov(S5;,5;) =0
In this case, the assimilation would not change the total salinity



3D-Var

» Minimization of the cost function:
J(x) = (x — xf)TPf_1 (x — Xf) + (y° — h(x))T R (y° — h(x))

using its gradient:

VJ(x) = 2P/ (x —x/) —2H(x)"R™" (y° — h(x)) where Hj,, = %Zm
J
» Minimization: conjugate gradient, Newton-Raphson method,...
» The covariance of the analysis:
Pl = % ViV (21)
- P/ 4 H'R'H (22)

» Generalization of optimal interpolation to non-linear h

» No general inversion of m X m matrices.



-1 H “ ” H
» The term x’ P/ "x can be parameterized as “smoothness” constrain:

/ @ V'V : VV + a1 Vo - Vo + agp®dD
D

X is a discretization of the continuous field ¢.



