
SANGOMA: Stochastic Assimilation for the
Next Generation Ocean Model Applications

EU FP7 SPACE-2011-1 project 283580

Deliverable 6.9: Documentation of exercise sets for
summerschools
Due date: 30/4/2014

Delivery date: 12/9/2014

Delivery type: Report , Public

J.-M. Beckers A. Barth Y. Yan F. Laenen M. Canter
University of Liège, BELGIUM

P.-J. Van Leeuwen S. Vetra-Carvalho
University of Reading, UK

L. Nerger P. Kirchgessner
Alfred-Wegener-Institut, GERMANY

A. Heemink N. van Velzen M. Verlaan U. Altaf
Delft University of Technology, NETHERLANDS

P. Brasseur J.-M. Brankart G. Candille S. Metref
CNRS-LEGI, FRANCE

P. de Mey
CNRS-LEGOS, FRANCE

L. Bertino F. Counillon
NERSC, NORWAY

http://www.data-assimilation.net/


Deliverable 6.9

2

http://www.ulg.ac.be/
http://www.data-assimilation.net/


.

Introduction to data assimilation
applied to ocean models

Alexander Barth

a.barth@ulg.ac.be

April 17, 2014



Data assimilation methods



What is data assimilation ?

Data Assimilation

ObservationsModel

Analysis



Outline

I Why data assimilation ?

I Basic concepts

I Sequential assimilation

• Nudging

• Successive corrections

• Optimal Interpolation

• 3D-Var

• Kalman filter

• Kalman smoother

I Non-Sequential assimilation

• 4D-Var

• Representer method



Goal of data assimilation

I Calibration: choose model parameters coherent with observations.
Example: linear regression.
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I Improve the model accuracy with help of observations

I Data assimilation provides also a framework to identify model errors

I State estimation: determine the “best” (e.g. the most probable) state of a
system



Errors and uncertainty

I Neither the model nor the observations are perfect.

I Both have errors (uncertainty).

I error = systematic error (bias) + random error

I How can we represent uncertainty?



Ways to represent uncertainty

I For Gaussian-distributed errors.

• Error bars (for scalar variables) (mean,
standard deviation) or confidence inter-
val

• error covariance, example: x = (T1, T2)

P =

(
P11 P12

P12 P22

)
• Error modes (EOF: empirical orthogonal

functions)

• Graphical representation: ellipsoid for
more than one variable (vectors) (mean,
error covariance): xP−1x = 1

I ensemble of possible values

I probability density function



Errors in an ocean model

Errors in an ocean model might be due to

I errors in initial conditions

I errors in open ocean boundary conditions

I errors in atmospheric fields (wind, air temperature, ...)

I errors in bathymetry

I inappropriate parameterizations

I discretization error

I ...

What about model errors in other disciplines?



Errors in your observations

Errors in your observations might be due to

I instrumental error (bias, drift, limited accuracy and precision)

Observations might not represent exactly the same as the model variables

I mismatch in resolved scale

I mismatch in resolved processes

I ...



Notation

n scalar number of state variables
m scalar number of observations
N scalar number of ensemble members
k scalar ensemble index k = 1, . . . , N
J scalar cost function
f function model giving the model state vector at the next time step
M matrix n× n linear (or linearized) model
xf/a/t vector n× 1 the model forecast/analysis/truth
Pf/a matrix n× n error covariance of xf/a

Sf/a matrix n×N square root decomposition of Pf/a

ηn vector n× 1 the model error
Q matrix n× n error covariance of ηn
yo vector m× 1 observations
ε vector m× 1 observation error
R matrix m×m error covariance of yo

H matrix n×m observation operator
E[·] expectation

The superscript f and a refer to forecast and analysis respectively.



Basic concepts

I The state vector xn at time tn. For a primitive equation model, its dimension
is about n = 5× 5000× 20 = 5 106.

I The dynamical model fn:

xn+1 = fn(xn) [= Mnxn + Fn if the model is linear]

x0 = xi

model ≈ reality (t: true):

xtn+1 = fn(xtn) + ηn

xt0 = xi + ηi

I xt is of course unknown for in a real application. The assimilation method do
not require the knowledge of xt.

I The observations:

yon = hn(xtn) + εn
[
= Hnx

t
n + εn if the model is linear

]
in general: Hn = interpolation to observation grid ◦ variable transformation

εn = instrumental error + representativity error



Figure 1: For example, an altimetry track and model grid points



Assumptions

I All errors are zero in average (i.e. no bias):

E[ηn] = E[ηi] = E[εn] = 0

I The covariances are known:

E[ηnη
T
n′ ] = Qnδnn′ E[ηnη

iT ] = 0

E[ηiηi
T

] = Pi E[ηnε
T
n′ ] = 0

E[εnε
T
n′ ] = Rnδnn′

I Some assimilation methods are optimal if those assumptions are verified.

I If the assumptions are not verified (in particular biased model), the assimilation
schemes can still given useful results.

I For some assimilation method the error covariance matrix of the model state x
is assumed to be known:

E[
(
x− xt

) (
x− xt

)T
] = P



Consistency check

I Innovation vector dn (time index n is dropped in the following):

d = yo −Hxf = yo −Hxt −H
(
xf − xt

)
E[d] = 0

E[ddT ] = R + HPHT

I HPHT is the error covariance of Hx.

I One can use these relationships to test if the model is unbiased and if the error
covariances are consistent.

I Normalized innovation z =
(
R + HPHT

)−1/2
d should follow a Gaussian distri-

bution with zero mean unit covariance.

I Verification statistics:
tr(zzT ) = χ2

m

The left-hand side of the previous equation follow is a sum of m Gaussian dis-
tributed variables squared. It follows thus a χ2 distribution with m degrees of
freedoms. This distribution has a mean of m and a variance of 2m (Dee, 1995).



I One can also show that (Desroziers et al., 2005):

E[
(
Hxa −Hxb

) (
yo −Hxb

)
] = HPfHT

E[(yo −Hxa)
(
yo −Hxb

)
] = R

E[
(
Hxa −Hxb

)
(yo −Hxa)] = HPaHT



Sequential assimilation

Initialization: xa0 = xi

?

Forecast: xfn+1 = fn(xan)

?

Analysis: xan+1 = xfn+1 + Kn

(
yon+1 − hn(xfn+1)

)
�

I Kn: Kalman gain

I Analysis = only unbiased estimation if h is linear



Unbiased linear combination

I Model forecast xf and observations yo are assumed unbiased

I Linear combination xa should be unbiased too E[xa] = xt

I General form of linear combination

xa = J xf + K yo

E[xa] = J E[xf ] + K E[yo]

E[xa] = J xt + KH xt

E[xa] = (J + KH) xt

therefore J + KH = I. If we choose J = I−KH,

I Analysis:

xa = (I−KH) xf + Kyo

xa = xf + K
(
yo −Hxf

)



Direct insertion

I Part of the state vector is directly observed (e.g. SST)

I The observed part of the state vector is replaced by the observations.

xanj′(i) = yoni

xanj = xfnj on non-observed grid points

I The ith observation corresponds to the j′(i) element of the state vector

I The observation operator will be one for the observed elements of the state vector
and zero otherwise (Hj′(i),i = 1).

xan = xfn + HT
(
yo − xfn

)
I Error in the model are assumed to be much larger than errors of the observations

I Problems

• Updated part of the state vector is inconsistent relative to the part of the
state vector which is not observed.

• Adjustment processes (e.g. geostrophic adjustment creating barotropic
waves, mixing) can degrade the model results



Nudging

I As in direct insertion, a part of the state vector must be directly observed.

I Analysis:

xanj′(i) = xfnj′(i) + ri

(
yoni − xfnj′(i)

)
xanj = xfnj on non-observed grid points

I In matrix form:
xan = xfn + riH

T
(
yo − xfn

)
I For a scalar variable: (1/r = relaxation time scale)

dx

dt
= f(x(t)) + r (yo(t)− x(t))

I Relaxation term is applied at the model time step.

I SST Nudging ⇒ correction of surface heat flux.

I Nudging towards climatology to prevent drift of the model.

I Relaxation reduces the model variability.



Example
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dx/dt = r (yo − x) (here r = yo = 1)



Demonstration

I A web-application showing the functioning of the Kalman filter is available at
http://www.data-assimilation.net/Tools/AssimDemo/.

I Review of what is a twin-experiment

I Very simple models can be used:

No time variation

The state vector x has two elements (x1, x2)T and there is no time variation:

xn+1 = xn (1)

The model matrix M is thus the identity matrix.

http://www.data-assimilation.net/Tools/AssimDemo/


1D advection in periodic domain

The state vector x has four elements and it is subjected to the following dynamics

x(n+1) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

x(n) (2)

This simple system would be the result of a 1D advection scheme in a periodic do-
main with a constant velocity. The grid resolution over time step is equal to the velocity.

Without using the web-interface, what would be the model state after the 1st,
2nd,... time step?.



Oscillations

I The state vector x has two elements and it is governed by:

dx1

dt
= fx2 (3)

dx2

dt
= −fx1 (4)

I The numerical example uses f = 2π with a time step of ∆t = 0.1. One can
show that two successive states are related by:

x(n+1) =

(
cos(f∆t) sin(f∆t)
− sin(f∆t) cos(f∆t)

)
x(n) (5)

I What kind of oscillation would these equations describe in the ocean?



Two oscillations

The state vector x has four elements and it is governed by:

dx

dt
= Ax =


0 0 −a −b
0 0 −b −a
a b 0 0
b a 0 0

x

where a = 2π and b = π. The eigenvectors and eigenvalues of the model matrix
allows us to find an analytical solution:

x(t) =


C1 C2 C3 C4

C1 C2 −C3 −C4

−C2 C1 −C4 C4

−C2 C1 C4 −C3




cos(ωt)
sin(ωt)
cos(ω′t)
sin(ω′t)


where ω = a+ b and ω′ = a− b.



In the numerical example, this equation is solved with a Crank-Nicholson schema
and a time step ∆t = 0.1.

xn+1 − xn
∆t

= A
xn+1 + xn

2(
I− ∆t

2
A

)
xn+1 =

(
I +

∆t

2
A

)
xn

The model matrix is thus:
M =

(
I− ∆t

2
A
)−1 (

I + ∆t
2

A
)
.

xn+1 = Mxn (6)



Lorenz model

The classical Lorenz model (simplified mathematical model for atmospheric convection)
with σ = 10, β = 8/3 and ρ = 28.

dx

dt
= σ(y − x) (7)

dy

dt
= x(ρ− z)− y (8)

dz

dt
= xy − βz (9)

The system is discretized with a Runge Kutta time stepping scheme with ∆t = 0.05.



Nudging demo

I Model: identity xn+1 = xn

• Single observation (Model time steps between observations: 25)
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=25

• Relaxation term acts as low pass-filter (Model time steps between observa-
tions: 1)
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1

• Over-fitting of observations if nudging relaxation time-scale is too short
(Model time steps between observations: 1, relaxation time-scale: 2)
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1&nudging_

ts=2

I Model: oscillation

• Based on the default values, try to find a good relaxation time-scale
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=oscillation

• In which sense would you need to the change the other parameters to
improve the solution with assimilation?

http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=25
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1&nudging_ts=2
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=id&obs_tsteps=1&nudging_ts=2
http://data-assimilation.net/Tools/AssimDemo/?method=Nudging&model=oscillation


Optimal Interpolation

I The observation operator must be linear

I The error covariance of the model state vector is defined as:

Pf,a
n = E[(xf,an − xtn)(xf,an − xtn)T ]

I We assume that Pf
n is known.

I The Kalman gain is chosen such that the norm of xan−xtn is as small as possible:

J(K) = E[(xan − xtn)TW(xan − xtn)] = tr(WPa
n)

I We introduce an error norm with the diagonal matrix W

I The optimal value of K is independent of W

Kn = Pf
nH

T
n

(
HnP

f
nH

T
n + Rn

)−1



How to derive the Kalman gain?

The analysis is given by:

xa = xf + K
(
yo −Hxf

)
(10)

= (I + KH) xf + Kyo (11)

The variance of the analysis xa is a function of the gain matrix K:

Pa (K) = (I−KH) Pf (I−KH)T + KRKT (12)

We want to have the overall smallest possible error on xa.

tr (WPa (K)) = tr
(
WPf

)
−2 tr

(
WKHPf

)
+ tr

(
WK HPfHTKT

)
+ tr

(
WKRKT

)
(13)

If K is the optimal gain, then a small increment of δK does not modify the total
error variance in the first order of δK.

tr (WPa (K + δK))− tr (WPa (K)) (14)

= 2 tr
(
WK HPfHT δKT

)
− 2 tr

(
WPfHT δKT

)
+ 2 tr

(
WKRδKT

)
= 2 tr

(
W
[
K
(
HPfHT + R

)
−PfHT

]
δKT

)



Since the perturbation δK is arbitrary, the expression inside the brackets has to be
zero.

K = PfHT
(
HPfHT + R

)−1
(15)

Error covariance of the analysis

Equation (12) can be expanded into:

Pa = Pf −KHPf −PfHTKT + K
(
HPfHT + R

)
KT (16)

= Pf −KHPf −PfHTKT + PfHTKT (17)

= Pf −KHPf (18)

where we used the optimal gain from equation (15).



Optimal Interpolation analysis

I Analysis:

xa = xf + PfHT (HPfHT + R︸ ︷︷ ︸
covariance of the i.v.

)−1 (yo −Hxf︸ ︷︷ ︸
innovation vector

)

Pa = Pf −KHPf

I For scalars: if we want to combine the temperature predicted by a model Tm
(σm) with an observation To (σo), the analyzed temperature is:

Ta =

(
1

σ2
m

+
1

σ2
o

)−1(
Tm
σ2
m

+
To
σ2
o

)
σ2
a =

(
1

σ2
m

+
1

σ2
o

)−1



Example

I Compare behavior of the variable x2 of the model “identity matrix” and “oscil-
lation”.

I http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=id

I http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=oscillation

I Describe the behavior of the OI scheme if the error correlation of x1 and x2 is
0.9 for the model “identity matrix”.

http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=id
http://data-assimilation.net/Tools/AssimDemo/?method=OI&model=oscillation
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Figure 2: The observed part of a linear system with 4 state variables: the true state
vector, xt, the analysis xa, the state of the system without assimilation xb (b, back-
ground). The observations yo are extracted from xt. The trajectories xa and xb start
from a wrong initial condition.



Covariances

I P : n× n(n ≈ 106). 1012 variables to determine and to store !?

I Constraints: fields are generally “smooth”, close to hydrostatic and geostrophic
equilibrium (at sufficiently large scales) and obeying conservation laws,...

I Decomposition of P in variance D and correlation C

P = D1/2CD1/2

• Correlation length = typical spatial scale of the dominant process

• ⇒ “smooth” field

Correlation C



Reduced rank covariance matrices

I Representation of the covariances by the dominant eigenvectors and eigenvalues:

P = E[ηηT ] (19)

P = LDLT L : n× r, D : r × r (20)

In general r ≈ 10− 100.

I Ensemble representation: x(k), k = 1, . . . , N

P =< (x− < x >)(x− < x >)T >= XXT <>= ensemble average

In general slower convergence (N−1/2) if N increases. N ≈ 100− 500.

I Consequence: The model error η and the correction of the state vector xan − xfn
belong to the vector subspace spanned by the columns of L (or X).

I For the analysis, P = LDLT doesn’t have to be formed explicitly

K = L
(
D−1 + LTHTR−1HL

)−1
LTHTR−1

I But a reduced-rank covariance introduces an unphysical long-range correlation



Balanced covariances

I Conservation of e.g. salinity:
∫
Sd3x = const.

Geostrophic equilibrium: v = 1
ρ0f

ez ×∇ph(T, S, ζ)

I General form (linear constraints):

Cx = const.⇒ CP = 0

I Example:
∑

i cov(Si, Sj) = 0
In this case, the assimilation would not change the total salinity



3D-Var

I Minimization of the cost function:

J(x) =
(
x− xf

)T
Pf−1 (

x− xf
)

+ (yo − h(x))T R−1 (yo − h(x))

using its gradient:

∇J(x) = 2Pf−1 (
x− xf

)
− 2H(x)TR−1 (yo − h(x)) where Hjm =

∂hm
∂xj

I Minimization: conjugate gradient, Newton-Raphson method,...

I The covariance of the analysis:

Pa−1 =
1

2
∇x∇xJ (21)

= Pf−1
+ HTR−1H (22)

I Generalization of optimal interpolation to non-linear h

I No general inversion of m×m matrices.



I The term xTPf−1
x can be parameterized as “smoothness” constrain:∫
D

α2∇∇ϕ : ∇∇ϕ+ α1∇ϕ · ∇ϕ+ α0ϕ
2dD (23)

x is a discretization of the continuous field φ.


