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Introduction

An important part of Sangoma project is to investigate appropriate methods and
algorithms for assessing observation systems. A simple and powerful method for
assessing the impact of observing systems is based on the computations of de-
grees of freedom for signal (DFS) or trace method [Rodgers, 2000, Rabier et al.,
2002], which will be implemented here and used to evaluate the assimilation im-
pact of satellite date of new ecosystem data. However, since some new data
assimilation methods can produce non-Gaussian priors (such as particle filter
based methods) and most new observational data is non-Gaussian (e.g. from
satellite, radar etc) we need to use more advanced methods to asses the poten-
tial impact this data can have in our assimilation system. These include relative
entropy between prior and posterior distributions, mutual information and DFS
computed with the anamorphosed variables.

Hence, this report is divided into two parts, where in first part (Chapter 2) we
present a summary of measures of observation impact including methods that
can be applied to non-Gaussian distributions (prior and/or posterior) paying at-
tention to distinguish between linear and non-linear cases. We have included
four methods: sensitivity, trace method or DFS, mutual information, and relative
entropy. In the second part (Chapter 3) we present results from experiments
done within Sangoma to compare the impact of assimilating ocean colour data
from three satellites (Sea-viewing Wide Field-of-view Scanner instrument (Sea-
WIFS) aboard the OrbView-2 (a.k.a. SeaStar) satellite, the Moderate Resolution
Imaging Spectroradiometer instrument aboard the Aqua satellite (AquaMODIS),
and the Medium Resolution Imaging Spectrometer (MERIS)) given an assimi-
lation system that uses the Ensemble Kalman filter [Evensen, 2003]. We use
an ensemble of simulations that covers the North Atlantic and is designed to
assess the effects of the stochastic parametrisation on the chlorophyll represen-
tation [Garnier et al., IN PRESS]. Here, we assess the pertinence of each of
these three satellite products by quantifying their individual potential to reduce
forecast error. Such an evaluation should allow a better understanding of the
way different observational networks affect the assimilation, thereby leading to a
better optimisation in the future design of the observational networks that are to
be assimilated. For this we use the trace method (or DFS) applied to anamor-
phosed variables, a novel approach that is compatible with the Sangoma toolbox
(WP2) and that is used in the Deliverable 5.6. Using the trace method allows
us to exploit existing, costly to perform, ensembles of simulations, and evaluate
the performance of different observational array at detecting prior errors with-
out performing data assimilation, which keeps computational cost relatively low.
Dealing with the effectiveness of the correction in observation-space, the trace
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method quantifies the impact that an observational array would have, if it was
to be assimilated in the forecast ensemble. While in Deliverable 5.6 we use the
trace method to quantify the potential impact of assimilating physical ocean data
(i.e. sea surface height, salinity and temperature profiles) from different satellite
products and in situ measurements, this report uses the trace method to quan-
tify the potential impact of assimilating ocean colour data (from which chlorophyll
concentration is extracted) from different satellite products. Note that the trace
method method will be further developed in the EC-funded Atlantos project.
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Measures of observation impact

This chapter provides a description of:

• Sensitivity to observations;

• Degrees of Freedom of Signal (DFS);

• Relative Entropy RE;

• Mutual Information MI;

methods and will discuss some examples on how they are implemented and what
they tell us about the impact of observations. We note that sensitivity to obser-
vations, Relative Entropy and Mutual Information are included in Sangoma diag-
nostic tool package and can be downloaded from Sangoma repository:

http://sourceforge.net/p/sangoma/code/HEAD/tree/tools/trunk/Matlab/diagnostics/.

2.1 Sensitivity to observations

2.1.1 Description

Gaussian case

In Gaussian data assimilation where the analysis, xa, is a linear function of the
observations and prior estimate,

xa = xb + K(y −Hxb), (2.1)

where K is the Kalman gain, a function of P and R, H is the linear observation
operator, y are observations at time of analysis.

The sensitivity of the analysis to the observations has an obvious interpreta-
tion in terms of observation impact [Cardinali et al., 2004]. It is defined as

S =
∂Hxa

∂y
. (2.2)

This is a m×m matrix where m is the size of the observation space.
Differentiating eq. 2.1 with respect to y we see that

SG = HK, (2.3)
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where superscript (.)G refers to Gaussian assumption. The Kalman gain can be
written in many different forms including K = Pa,GHTR−1 where Pa,G is the anal-
ysis error covariance matrix. Therefore, the sensitivity is inversely proportional
to R and proportional to Pa,G. Hence, the analysis has greatest sensitivity to
independent observations with the smallest error variance which provide infor-
mation about the region of state spaces with the largest prior error [Fowler and
van Leeuwen, 2012]. In the range between 0 and 1, K increases with the amount
of observation used to alter the background vector, that is to say, when the co-
variance matrix of observational error R is relatively smaller than the covariance
matrix of the forecast error Pf .

Non-Gaussian case

When prior is not Gaussian, the simple linear relationship between the mean of
the posterior and the observations in eq. 2.1 breaks down. Also, in most non-
Gaussian cases the posterior mode will not correspond to the mean of the poste-
rior as the posterior could be bi- or multi-modal. This makes the mode more dif-
ficult to uniquely define and the mode will have infinite sensitivity to observations
when the mode transfers from one peak to another [Fowler and van Leeuwen,
2012].

As an example assume that the prior is a Gaussian mixture with two modes,
Fowler and van Leeuwen [2012] shows that in that case the sensitivity of the
analysis may be computed as

S =
1

k + 1
+

kw(1− w)(µ1 − µ2)2 exp−a1−a2

(1 + k)2σ2 [w exp−a1 +(1− w) exp−a2 ]2
, (2.4)

where

1. w, the prior weight given to the first Gaussian, leaving the weight given to
the second Gaussian as 1− w;

2. µ1, the mean of the first Gaussian;

3. µ2, the mean of the second Gaussian;

4. σ2, the variance of both Gaussian components;

5. ai =
[
(µy − µi)2/2(1 + k)σ2

]
;

6. k =
σ2
obs
σ2 , a scalar.

Thus in non-Gaussian case S is a function of the observation value due to the
exponent ai. For more detailed discussion and interpretation see Fowler and van
Leeuwen [2012].

From figure 2.1 we can see that when full prior is used to assimilate the ob-
servation the analysis may be both more or less sensitive to the observation than
when the prior is approximated by a Gaussian. The degree to which the sensitiv-
ity is affected depends on the value of the observation.
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Figure 2.1: Left: the prior distribution. The vertical blue line shows the prior
mean, µx. Right: S is the solid line and the Gaussian approximation is given by
the dashed line. For more detail see Fowler and van Leeuwen [2012].

2.1.2 Available code as part of Sangoma tools

Sensitivity function is implemented in Sangoma tools and you can find the code
in Matlab and Fortran on Sangoma Sourceforge site. Deliverable DL2.5 contains
descriptions of all tools implemented in Sangoma project including Sensitivity.

2.2 Trace method or Degrees of Freedom for Signal (DFS)

The trace of S in eqn. 2.3 gives the degrees of freedom for signal and we will use
this method in Chapter 3 to evaluate the impact of new ecosystem data. Within
this report we refer to this method as the trace method.

2.2.1 Description

The trace method consists of quantifying the sensitivity of an ensemble to obser-
vations. In other words, how a given assimilation system uses the observations to
"pull” the forecast signal from the background. This sensitivity is represented by
the S = HK matrix (see eqn. 2.3 in section above), which compares the forecast
error covariance matrix Pf (given by the stochastic ensemble) with the observa-
tional error covariance matrix R.

The gain in information brought by the observations is quantified via the com-
putation of tr(HK), which is the sum of the singular values of the HK matrix.
Hence, ds = tr(HK) describes the number of useful, independent quantities in
the observations (= degrees of freedom for signal) that are used to reduce the
uncertainty of xf , by quantifying how many degrees of freedom the observations
are able to detect in Pf . In other words, it evaluates which observational network
detects most degree of freedom in the background vector xf . ds can vary be-
tween 0 (observations have no influence on the analysis, because R� Pf ), and
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m, the number of independent observations (R� Pf , so HK = I).

2.3 Relative Entropy (RE)

2.3.1 Description

Relative entropy measures the gain in information of the posterior relative to the
prior and is given by

RE =

∫
p(x|y) ln

p(x|y)

p(x)
dx. (2.5)

Relative entropy can be taught of as a measure of the ’distance’ between p(x|y)
and p(x). However, it is not true distance because it is not symmetric [Cover and
Thomas, 1991].

Gaussian case

When both the prior and posterior are Gaussian, relative entropy is given by
[Bishop, 2006]

RE =
1

2
(xa − xb)TB−1(xa − xb) +

1

2
ln
[
BP−1

a

]
+

1

2
tr
[
B−1Pa

]
− 1

2
n. (2.6)

The first term in known as the signal term, which measures the change in the
mean if the distribution. The rest is known as the dispersion term, which mea-
sures the change in the covariance and can be written in terms of the eigenvalues
of the sensitivity matrix whilst the signal term depends on the value of observa-
tions and the prior mean.

The dependance of relative entropy on both the mean and variance of the
posterior makes it an attractive measure, as it gives a more complete description
of the observation impact. It can also be shown that relative entropy is invariant
under a general non-linear change of variables [Kleeman, 2011].

2.3.2 Available code as part of Sangoma tools

Relative entropy function is implemented in Sangoma tools and you can find the
code in Matlab and Fortran on Sangoma Sourceforge site. Further, the deliv-
erable DL2.5 contains descriptions of all tools implemented in Sangoma project
including Relative entropy.

2.4 Mutual Information (MI)

2.4.1 Description

Mutual information measures the reduction in entropy when observation is made,
that is the difference between entropy in the prior and the posterior. In the infor-
mation theory, entropy is a measure of the uncertainty associated with a random
variable. For a probability distribution p(x), entropy can be defined as∫

p(x) ln p(x)dx.
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The entropy of posterior pdf, p(x|z) is defined as∫ ∫
p(x, y) ln p(x|y)dxdy.

Mutual information is given by the prior entropy minus the conditional entropy

MI = −
∫
p(x) ln] [p(x)] dx+

∫ ∫
p(x, y) ln [p(x|y)] dxdy, (2.7)

where despite the dependence of the posterior error variance on the observa-
tions, the conditional entropy is independent of the value of the observations.
Therefore, mutual information, unlike the sensitive of the posterior mean to the
observations, is independent of the value of the observations, see Fowler and
van Leeuwen [2012] for more detailed description with figures.

Gaussian case

When p(x) is Gaussian, the entropy associated with x depends only on its covari-
ance matrix Cx. The entropy in this case is given by (1/2) ln [(2πe)n|Cx|], where
n is the size of the vector x and | ∗ | denotes the determinant [Rodgers, 2000].
Mutual information, therefore, for a Gaussian prior and posterior is given by

MI =
1

2
ln
[
BP−1

a

]
, (2.8)

and therefore, it is a measure of the difference in the determinant of the prior and
posterior covariance matrices.

Mutual information can be written in terms of the eigenvalues of the sensitivity
matrix, S, as follows

MI = −1

2

r∑
i=1

ln |1− λi|, (2.9)

whereλi is the ith eigenvalue of S (ordered in descending magnitude) and r ≤
min(n, p) is the rank of S. It is a scalar interpretation of the observation impact,
and therefore the impact of individual observations may not be easily quantified.
However, mutual information can be shown to be additive with successive obser-
vations, see Fowler and van Leeuwen [2012].

In case of non-Gaussian prior and posterior the expected value of relative
entropy can be shown to be equal to mutual information. This can be shown by
writing mutual information in its equivalent form

MI =

∫ ∫
p(x, y) ln

[
p(x, y)

p(x)p(y)

]
, (2.10)

where now mutual information is interpreted as how ’close’ two variables are to
being independent, that is the error approximating p(x, y) by p(x)p(y) [Cover and
Thomas, 1991]. In this form MI can be seen to be∫

p(y)RE dy.
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Figure 2.2 shows the behaviour of the different measures for the simple 2-
component Gaussian mixture prior pdf, as function of the value of the observa-
tion. For each measure it compares the full nonlinear expression of the measure
with its Gaussian approximation, as a ratio of the two. So a value of 1 means that
the full expression and the Gaussian approximation are the same, and comput-
ing the simpler Gaussian approximation will do fine. However, for example the
sensitivity shows values ranging from 0.58 to 1.5 showing that the Gaussian ap-
proximation can lead to a factor 2 over- or underestimation of the impact of that
observation.

Figure 2.2: S (black), MI (red), RE (blue) all normalised by their Gaussian approx-
imations. The black dashed line shows

∫
p(y)Sdy normalised by its Gaussian

approximations. For more detail see Fowler and van Leeuwen [2012].

2.4.2 Available code as part of Sangoma tools

Mutual information function is implemented in Sangoma tools and you can find
the code in Matlab and Fortran on Sangoma Sourceforge site. Further, the deliv-
erable DL2.5 contains descriptions of all tools implemented in Sangoma project
including mutual information.
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Impact of new ecosystem data

This Tasks aims to evaluate the impact of assimilating new ecosystem data. As
an alternative to Observing System Simulations Experiments (OSSE), we pro-
pose to use the tr(HK) method, a novel approach that is compatible with the
Sangoma toolbox (WP2) and that is used in the Sangoma Task 5.6. Using the
tr(HK) method allows to exploit existing, costly to perform ensembles of simu-
lations, and evaluate the performance of different observational array at detect-
ing prior errors without performing data assimilation, which keeps computational
cost relatively low. Dealing with the effectiveness of the correction in observation-
space, tr(HK) quantifies the impact that an observational array would have, if it
was to be assimilated in the forecast ensemble. While Task 5.6 uses tr(HK) to
quantify the potential impact of assimilating physical ocean data (i.e. sea surface
height, salinity and temperature profiles) from different satellite products and in
situ measurements, this Tasks uses tr(HK) to quantify the potential impact of
assimilating ocean color data (from which chlorophyll concentration is extracted)
from different satellite products. Note that the tr(HK) method will be further de-
veloped in the EC-funded Atlantos project.

Here, we compare the impact of assimilating ocean colour data from three
satellites (Sea-viewing Wide Field-of-view Scanner instrument (SeaWIFS) aboard
the OrbView-2 (a.k.a. SeaStar) satellite, the Moderate Resolution Imaging Spec-
troradiometer instrument aboard the Aqua satellite (AquaMODIS), and the Medium
Resolution Imaging Spectrometer (MERIS)) given an assimilation system that
uses the Ensemble Kalman filter [Evensen, 2003]. We use an ensemble of sim-
ulations that covers the North Atlantic and is designed to assess the effects of
the stochastic parametrisation on the chlorophyll representation [Garnier et al.,
IN PRESS]. Here, we assess the pertinence of each of these three satellite prod-
ucts by quantifying their individual potential to reduce forecast error. Such an
evaluation should allow a better understanding of the way different observational
networks affect the assimilation, thereby leading to a better optimisation in the
future design of the observational networks that are to be assimilated.

Because the tr(HK) method assumes a Gaussian distribution, and the dis-
tribution of chlorophyll across the prior ensemble is not Gaussian, we apply an
anamorphic transformation [Brankart et al., 2012] to the prior ensemble before
performing the analysis. The anamorphic transformation consists in transform-
ing an non-Gaussian distribution into a Gaussian distribution using a change in
non-linear variables to remap the non-Gaussian quantiles into Gaussian quan-
tiles [Brankart et al., 2012].

12 Impact of new ecosystem data
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3.1 Implementation the trace method

Computing tr(HK) requires the knowledge of Pf , R, and H. In this sense, the
implementation of this method is very efficient with most Sangoma methods. In
theory, Pf has a very large number of entries (= number of state variables). For
computational purposes, it is possible to select a reduced number of entries for
Pf (reduced ranked approach). We derive Pf from the 60-member ensemble
described below and in Garnier et al. [IN PRESS]. In this example, Pf has there-
fore 60 entries. H and R are given by the observations. To compute tr(HK), we
decompose Pf such as:

Pf = SfSf
T
, (3.1)

with Sf (i) = (xf (i) − xf )(m− 1)−1/2 (3.2)

where i corresponds to the individual ensemble members, and m to the total
number of ensemble members. We can then rewrite K such as:

K = Sf [I + Γ]−1(HSf )
T
R−1 (3.3)

with Γ = (HSf )
T
R−1HSf = UΛUT . (3.4)

Therefore, HK can be expressed as:

HK = HSf [I + Γ]−1(HSf )
T
R−1 (3.5)

and tr(HK) as:

tr(HK) = tr[(I + Λ)−1Λ] = Σ(λk)(1 + λk)
−1, (3.6)

with λk = singular values of Γ.

3.2 Data

3.2.1 Prior ensemble

We use the ensemble of simulations described in Garnier et al. [IN PRESS]. It
is performed with the North Atlantic DRAKKAR configuration of NEMO version
3.4 at the eddy-permitting horizontal resolution of 1/4◦ (NATL025), and covers
the time period from January to December 2005. The ocean circulation model
is coupled with the biogeochemical model PISCES-v2, which is suitable to rep-
resent the biological behaviour in geographical provinces with various biogeo-
chemical regimes. It includes 24 biogeochemical variables, amongst which we
distinguish two different types of phytoplankton, each of them containing its own
chlorophyll concentration. The total chlorophyll concentration is therefore the ad-
dition of these two species contribution. In order to include the years covered
by the SeaWIFS data, this NATL025 configuration is forced by ERA Interim at-
mospheric forcing fields instead of the Drakkar Forcing Sets. To build the prior
ensemble, we use two types of stochastic parametrisation in the equation state
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[Brankart, 2013]: One accounts for uncertainties in the biogeochemical param-
eters (in this case we choose seven parameters), the other for uncertainties in
unresolved spatial scales [Garnier et al., IN PRESS]. Then, a 60-member ensem-
ble of perturbed simulations is run for 12 months (January to December 2005),
that is designed to assess the effects of the stochastic parametrisation on the
chlorophyll representation.

To illustrate the spatial representation of the prior ensemble, Figure 3.1 shows,
for May 15, 2005, the simulated surface chlorophyll as (a) the ensemble mean
and (b) the relative ensemble standard deviation (absolute standard deviation
normalised by the ensemble mean to avoid correlations with the magnitude of
chlorophyll concentrations). According to Figure 3.1b, the ensemble dispersion
is maximal where small scale effects are predominant (i.e. Gulf Stream region,
equatorial current and around the coastal zones), and small where chlorophyll
concentrations are high (high latitudes). As expected, a small dispersion is gen-
erated in March and October, when the biological activity is less intense (not
shown). To further illustrate the distribution of this ensemble, Figure 3.2 shows,
for May 15, 2005, the composites of simulated surface chlorophyll concentrations
(considering simultaneously the information coming from all ensemble members)
representing at each grid point the minimum, the 25% percentile, the median,
the 75% percentile, and the maximum of the ensemble. Unlike Figure 3.1, Fig-
ure 3.2 shows a significant dispersion generated at high latitudes. In addition,
Figure 3.2 shows that the difference between the maximum and the third quartile
is higher than the difference between the first quartile and the minimum, which
results mainly from the zeros lower bound. Hence, where concentrations are
small, the simulation can hardly make it decease, while extreme values always
correspond to high chlorophyll concentrations. This means that the shape of the
stochastic perturbations does not modify the prior lognormal chlorophyll distribu-
tion, and that it is important to consider a probability density that characterises
the ensemble better than only the ensemble mean and covariance.

Figure 3.1: Surface chlorophyll as simulated in the prior ensemble, and shown as
(a) the ensemble mean and (b) the relative standard deviation, for May 15, 2005.

3.2.2 Observations

We use ocean colour data from the three following satellites data: SeaWIFS,
AquaMODIS, and MERIS. Ocean colour data from SeaWIFS is obtained from the
NASA’s Goddard Space Flight Centre, where near-surface chlorophyll-a concen-
trations are derived from the OC-4 operational algorithm. We use two products
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Figure 3.2: Surface chlorophyll as simulated in the prior ensemble, and shown as
(a) the minimum, (b) the 25% percentile, (c) the median, (d) the 75% percentile,
and (e) the maximum of the ensemble, for May 15, 2005.

from SeaWIFS: The untouched, original low resolution data (SeaWIFSLR), and
the filled-in, high resolution data (SeaWIFSHR) that corresponds to SeaWIFSLR
filled-in with data from AquaMODIS and MERIS.

To compute tr(HK), we use an observational error (measurement and repre-
sentativeness) of 30%, that accounts for a 1◦ spatial correlation using a diagonal
matrix that contains the diagonal entries of R inflated by a factor greater than
one, which in practice consists in giving less weight to each observation since
they have correlated errors [Abdelnur Ruggiero et al., Submitted]. The observa-
tional window accounts for the 5 days preceding the date of interest. To illustrate
the observational space, Figure 3.3 shows the surface chlorophyll as observed
in (a) SeaWIFSHR, (b) SeaWIFSLR, (c) AquaMODIS, and (d) MERIS. Accord-
ing to Figure 3.3, SeaWIFSHR includes a limited amount of missing data, mostly
located around the western tropical Atlantic. On the other hand, SeaWIFSLR,
AquaMODIS, and MERIS show larger areas of missing data, located mostly over
the 0-30◦ N band north of the tropical Atlantic, as well as over the eastern tropical
Pacific for SeaWIFSLR.

Ecosystem data report 15

http://www.reading.ac.uk/
http://www.data-assimilation.net/


Deliverable 5.2

10°S

10°N

30°N

50°N

70°N

100°W 80°W 60°W 40°W 20°W 0°

m05d15 seaWIFS-HR

0.01

0.1

0.3

1

2

5

C
H

L 
in

 m
g
/m

3

10°S

10°N

30°N

50°N

70°N

100°W 80°W 60°W 40°W 20°W 0° 20°E

y2005m05d15 SeaWIFS

0.01

0.1

0.3

1

2

5

C
H

L 
in

 m
g
/m

3

10°S

10°N

30°N

50°N

70°N

100°W 80°W 60°W 40°W 20°W 0° 20°E

m05d15 AQUA

0.01

0.1

0.3

1

2

5

C
H

L 
in

 m
g
/m

3
10°S

10°N

30°N

50°N

70°N

100°W 80°W 60°W 40°W 20°W 0° 20°E

m05d15 MERIS

0.01

0.1

0.3

1

2

5

C
H

L 
in

 m
g
/m

3

Figure 3.3: Surface chlorophyll as observed in (a) SeaWIFSHR, (b) SeaWIFSLR,
(c) AquaMODIS, and (d) MERIS, using a 5-day observational window from May
10 to May 15 2005.

3.3 Results

Because the Garnier et al. [IN PRESS] ensemble has not been tested for its com-
patibility with other observations than SeaWIFSHR, this Task compares, qualita-
tively, the sensitivity of tr(HK) to different observational networks rather than
providing quantitative conclusions.

Figure 3.4 shows tr(HK) computed from the prior ensemble (May 15, 2005)
and ocean colour data taken from (a) SeaWIFSHR, (b) SeaWIFSLR, (c) AquaMODIS,
and (d) MERIS, using a 5-day observational window from May 10 to May 15,
2005. According to Figure 3.4, assimilating any of the four observations brings
information around the Gulf Stream the tropical Atlantic areas. This is directly
related to the maps of standard deviations seen in Figure 3.1b and Figure 3.2,
which show the largest dispersion of the ensemble over these areas. Quanti-
tatively, Figure 3.4 shows that assimilating SeaWIFSHR is the most efficient at
reducing the forecast error, in particular over the eastern part of the Gulf Stream
area, and assimilating MERIS is the least efficient. In addition, MERIS show reg-
ularly spaced areas where no information is brought by the observations. These
differences are directly related to the location of the observations, as seen in Fig-
ure 3.3, where SeaWIFSHR shows the least amount of missing data over the
western part of the Gulf Stream, and MERIS shows regularly spaced areas of
missing data all across the domain.

On the other hand, it seems that the assimilation is not affected by the lack
of observation seen over the 0-30◦ N band in SeaWIFSLR and AquaMODIS,
and over the eastern tropical Pacific in SeaWIFSLR (Compare Figure 3.3 with
Figure 3.4). According to Figure 3.1b and Figure 3.2, this is most likely due to the
fact that the forecast error is very low in these areas: In these areas, the forecast
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does not require a strong modification and the lack of observation has limited
consequences for the assimilation.

We conclude that given the ensemble and assimilation system chosen in our
case, assimilating any of the four satellite data would reduce the forecast error
over the Gulf Stream and the tropical Atlantic areas, because this is where the
forecast error is the largest. The strength of the modification brought to the fore-
cast then depends on the location of the observations, and as expected from
Figure 3.3, our results show that assimilating SeaWIFSHR in our case brings the
most information to the forecast, as it corresponds to the observation with the
least amount of missing data.
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Figure 3.4: tr(HK) computed from the prior ensemble (May 15, 2005) and ocean
color data taken from (a) SeaWIFSHR, (b) SeaWIFSLR, (c) AquaMODIS, and (d)
MERIS, using a 5-day observational window from May 10 to May 15, 2005.
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Conclusion

In this report we have presented a summary of four methods that can be used to
asses the observation impact for linear and non-linear prior and posterior distri-
butions, namely sensitivity, trace method, mutual information and relative entropy
and presented application of the trace method to non-Gaussian data to evaluate
an observation network.

In the methods we have distinguished between linear and non-linear cases
where applicable and where method has been implemented in Sangoma toolbox
we have included the links to the description of the tools and to the code of the
methods.

Through the application of the trace method we show that assimilating ocean
colour data from satellites is potentially very efficient at reducing the forecast er-
ror. These results show that the quantitative gain of information brought by the
satellite products depends primarily on the location and size of the forecast error
(the gain increases with the forecast error), in the cases discussed in this re-
port. Further, assimilating ocean colour data from any of the four satellites tested
brings information mostly over the Gulf Stream and tropical Atlantic regions, that
is to say where the forecast error is the largest. Additionally, the efficiency of the
assimilation depends on the location of the observations, and collecting observa-
tions in areas where the forecast error is small only has a limited impact on the
assimilation: e.g. over the 0-30◦ N band in our case. Assimilating SeaWIFSHR
is the most efficient at reducing the forecast uncertainty because it includes the
least amount of missing data. Finally, it is important to keep in mind that unlike as-
similating other data such as sea surface height, assimilating ocean colour data
is only efficient in Spring and Summer (March to August), when the phytoplankton
blooms.

We conclude that the trace method used here to evaluate an observational
network has a relatively low computational cost, is simple to implement and inter-
pret, and can be used on data that does not follow a Gaussian distribution (e.g.
Chlorophyll). Our results are very encouraging, and this method will be used
within the framework of EC-funded project Atlantos to optimise the deployment of
an observational network in the Atlantic Ocean. In particular, tr(HK) will be used
to evaluate the potential impact of assimilating Chlorophyll and Nitrate concen-
tration measured by the bioARGO floats (that measure the concentration profiles
of Chlorophyll and Nitrate across the upper 400 meters of the ocean, at variable
frequency).
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