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Chapter 1

Introduction

The main purpose of SANGOMA is to advance the status of probabilistic as-
similation methods in oceanography. The probabilistic approach means that the
uncertainty associated with the estimated ocean flow is available. The challenge
is then to qualify and quantify this uncertainty in order to get the most accurate
information as possible about the state of the ocean flow.

In the previous WP4 report (4.1), the benchmarks methodolgy has been fully
described. Also, probabibilistic metrics has been briefly introduced. The goal of
this document is to provide a manual to perform probabilistic verification in prac-
tical cases: for the small and medium benchmarks. First, chapter 2 reminds the
basic concepts of the probabilistic validation: the main probabilistic attributes and
the theoretical description of the probabilistic metrics -commonly called scores-
measuring these attributes. Then, chapter 3 shows how to specifically perform
the probabilisitc diagnoses in the small and medium benchmarks situations.
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Chapter 2

Probabilistic validation:
theoretical considerations

This chapter first presents the main attributes on which the probabilisitc systems
are evaluated. The following sections remind the theoretical properties of proba-
bilisitc scores (see chaper 4 in report 4.1): the Rank Histogram & the RCRV, the
CRPS and finally the Brier score & the Entropy.

2.1 Probabilistic attributes

How can one objectively evaluate the quality of a probabilistic system? Let us
consider the following statement produced by the probabilistic system: ‘there is
30% probability that the Northern Sea Route is free of ice’. Assuming the event
‘free of ice’ is unambiguously defined, neither its observed occurrence nor its
non-occurrence can be legitimately used to validate or unvalidate the produced
ensemble. Contrary to a deterministic system, the validation of a probabilistic
system cannot be performed over a single case (or realisation). One must use
a statistical approach, based on a sufficiently large set of realisations, Meaning
this validation requires an aggregation of a large set of independent realisations
of the considered process. After accumulating independent realisations of the
probabilistic system, two probabilistic properties (attributes) can be measured:
the reliability and the resolution (e.g. Toth et al. 2003).

In the example cited above, one has to wait until the 30% probability is pro-
duced by the system a number of times. Then one can first check the proportion
of actual observed occurrence of ‘free of ice’. If that proportion is equal or close
to 30%, the probabilistic system can be considered as statistically consistent. If,
on the contrary, that proportion is significantly different from 30%, the system is
statistically inconsistent. One condition for the validy of a probabilistic system is
therefore the statistical consistency between produced probabilities and observed
frequencies of occurrence of the event under consideration. This property of sta-
tistical consistency is called reliability.

More generally, the reliability is the system ability in producing Probability
Density Functions (pdf) in agreement with the observed pdf, i.e. distribution of
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the observed variable when a given pdf is produced. Actually, one considers a
system producing the pdf Fp with the frequency gp. Then, one aggregates the
observed variables when the system produces Fp in order to define the associ-
ated observed pdf F ′

p. Thus, Fp can be directly compared to F ′

p. The system is
reliable, or statistically consistent, if and only if for each class p of produced pdf
one has Fp = F ′

p. Several scores are used to evaluate this property, and some
of them are presented in the following sections: the Rank histogram & the RCRV,
but also the reliability component of the CRPS & the Brier score.
The reliability attribute is a necessary condition to have a skillfull probabilistic sys-
tem, but it is not a sufficient property. Actually, every system can be a posteriori
calibrated. It can be transformed into a reliable system by replacing Fp by F ′

p for
each p over a given verification set, and by applying this correction to the pdfs
produced by the system over the subsequent verification set (under stationnary
assumption of the system). Also, if one knows the climatological distribution Fc of
the observed variables over a given verification dataset, a system producing this
climatological distribution for each realisation would be obviously reliable ... but it
would provide no other usefull information than the climatology (no need to inte-
grate a complex numerical model to get this result). For instance, one knows the
climatological frequency when the Northern Sea Route is free of ice is 2 months
a year (occurrence ≈ 16%). If a probabilistic system produce the 16% probability
every day, it is reliable if one evaluates its performance over a year, but it cannot
provide any information about the seasonal (for instance) variability of that prob-
ability of occurrence. In other words, a climatological system would be perfectly
reliable without providing any additional useful information. To determine if one
has a skillful probabilisitic system, another attribute is then needed.

The resolution is the system ability in discriminating the disctinct observed sit-
uations; this property is closely related to the information content and the entropy
(e.g. Roulston and Smith 2002). If the system is reliable, the resolution is also
referred as the sharpness which measures the dispersion of a priori produced
pdfs (or probabilities). Resuming the notations from the previous paragraph, the
resolution can be seen as the dispersion of a posteriori observed pdf F ′

p. The
sharper the pdfs F ′

p compared to Fc are, the better the resolution is. In other
words, the resolution is the additional information, compared to the climatology,
that can be potentially extracted from the probabilistic system.

A skillful probabilistic system must then satisfy two criteria:

• to be reliable, i.e. Fp = F ′

p for any p

• Fp are as sharp as possible compared to Fc

The following sections introduce some commonly used probabilistic scores
(for univariate situation) and mostly remind the Appendix A from report 4.1.

2.2 Rank Histogram & RCRV

The probabilistic scores introduced here only verify the reliability of the probabilis-
tic system by checking the indistinguishability between the observed variables
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and the produced pdfs. More specifically, an ensemble of N members and one
observation are indistinguishable if one can consider they are independent draws
from the same random variable.

Rank Histogram (RH) Let us consider the produced pdf is represented by an
ensemble with size N . For each of M realisations of the system, the N ensem-
ble members are ranked in increasing order, thereby defining N + 1 intervals (or
bins). If the verification is statistically indistinguishable from the ensemble, it must
fall with equal probability in each of those N+1 intervals and then shows by accu-
mulation a flat RH. The shape of the RH caracterizes the lack of reliability of the
system. For instance, a strong U-shape with overpopulated outliers shows an un-
derdispersive system. The deviation from the flatness, considering the finitness
of M , is numerically measured by the following quantity

δ =
M(N + 1)

N

N∑

i=1

(
si
M

−
1

N + 1

)
2

(2.1)

where si is the observed population of the i-th interval. For a reliable system,
considering the finiteness of M , the expected value of δ must be equal to 1.
Note that δ is strongly M -dependent and increases with increasing M once the
system is (even slightly) non reliable (δ > 1). In order to avoid this numerical
effect, it is suitable to normalize this score by M , or to use the RCRV for the
reliability characterization of a probabilisitc system.

Reduced Centered Random Variable (RCRV) For each realisation of the sys-
tem, the following variable is defined

y =
o−m

σ
(2.2)

where m and σ are the mean and the standard deviation of the produced pdf
respectively and o the observed value. Note that the observation error σo can be
simply introduced in y by considering σ =

√

σ2
ens + σ2

o . The system is reliable,
if the mean of y over all the M realisation of the probabilistic system is null and
its standard deviation is equal to 1. Thus, the reliability is decomposed into (nor-
malized) bias b = E[y] and dispersion d2 = E[y2] − b2. Here, the U-shape RH is
equivalent to d > 1 for an underdispersive system.
Note that the RCRV bias/dispersion can be related to the RMSE at the first order
approximation by

RMSE2
≈ E[σ2](b2 + d2) (2.3)

2.3 Continuous Ranked Probability Score (CRPS)

The CRPS measures the global skill of a probabilistic system by evaluating both
reliability and resolution. It is based on the the square difference between the
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produced Cumulative Distribution Functions (cdf) of a univariate variable x and
the corresponding cdf of the observation:

CRPS = E

[∫

R

(Fp(x)− Fo(x))
2 dx

]

(2.4)

where Fp is the cdf associated with the produced pdf and Fo the cdf associated
with the observation (a simple Heaviside distribution when no observation error
is considered). Contrary to the reliability scores presented above, the CRPS has
the dimension of the evaluated variables (for instance expressed in meters for
the SSH, in Kelvin for the temperature, etc...). The CRPS can be decomposed
into the reliability/resolution parts in the same way as the Brier score (see next
section). But for practical and numerical considerations (see Candille and Ta-
lagrand 2005), the decomposition described by H. Hersbach (Hersbach 2000)
is chosen. This decomposition is based on the same principle as the rank his-
togram construction. The reliability part (Reli) is null for a reliable system and
the resolution part (Resol) goes from 0 for a perfect deterministic system to
Unc =

∫

R
Fc(x) (1− Fc(x)) dx for a useless and non informative system (Fc is

the climatological cdf associated with the verification data set).
Evaluated through the CRPS, a skillful probabilistic system must satisfy two cri-
teria:

• Reli = 0

• Resol ≪ Unc

• and CRPS = Reli+Resol

2.4 Brier score & Entropy

In this section, the probability of occurrence of a binary event is considered. The
presented scores are then computed in probability space.

Brier score The Brier score is a restriction of the CRPS to the probability
space. It measures the global skill of a probabililistic system by evaluating both
reliability and resolution criteria. For simplifications, we denote p the probability
p(x) of occurrence of an event related to the state vector x. The Brier score is
then written

B = E[(p − o)2] (2.5)

where o is the probability associated with the observed occurrence of the consid-
ered event. By definning p′ = Ep[o], the probability of the observed occurrence of
the event when p is produced, and pc = E[o] = E[p′] the climatological probability
of occurrence associated with the whole observation data set, the Brier score can
be decomposed into reliability and resolution parts (Murphy 1973):

B = E[(p − p′)2]
︸ ︷︷ ︸

reliability

+ pc(1− pc)− E[p′ − pc)
2]

︸ ︷︷ ︸

resolution

(2.6)
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The term pc(1− pc) is also called uncertainty and only depends on the the obser-
vation data set. A skill score can be thus defined by

Bs = 1−
B

pc(1− pc)
(2.7)

The reliability part is null for a perfectly reliable system. The resolution part goes
from 0 for a perfect deterministic system to 1 for a useless system, i.e. a system
providing no more information than the climatology pc.
Similarly to the CRPS, a system evaluated through the Brier score is skillful for a
given event if:

• p = p′ for any p

• resolution ≪ uncertainty or resolutionskill ≪ 1

Entropy The Entropy only measures the information content of the system
which is closely related to the resolution as evaluated through the Brier score.
Considering the notations above, the entropy is written

S = −E[p′ ln p′] (2.8)

This score goes to 0 for a perfect deterministic system to pc ln pc for a useless
system, i.e. a system providing no more information than the climatology pc. Note
that this score does not provide any diagnosis on the reliability of the probabilistic
system.

8 Probabilistic validation: theoretical considerations
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2.5 Some realistic examples

In this section, the behavior of some probabilistic scores is shown. The character-
isation of the outputs ensemble systems are fully under control through synthetic
data built from (log-)normal distributions:

• M=100000 number of realisations of the ensemble process

• N=50 ensemble size

• ensemble means: m ∈ N (0, S)
with S = 1 climatological spread

• ensemble standard deviations: σ ∈ LogN (s, 0.05)
with sharpness s = 20%.S

• 1 observation o ∈ N (m,σ)

• N=50 ensemble members x ∈ N (m− α.s, σ/β)
(α and β characterise the bias and the dispersion respectively)

Figure 2.1 shows the rank histograms (RH and the δ score), the bias/dispersion
from the RCRV and the CRPS = Reli + Resol for different values α and β. 9
ensembles systems are simulated with 3 different biases α: no bias, 50% nega-
tive bias (the ensemble underestimates the observation) and 100% negative bias.
Also 3 kinds of dispersive systems are simulated: twice overdispersive systems
(β = 1/2), perfect dispersive systems (β = 1) and twice underdispersive systems
(β = 2).
Note that the uncertainty computed from the CRPS is equal to 0.57 for all the
experiments. When the ensemble spreads are not degraded compared to the
observations (β = 1), the ratio Resol/Unc is equal to 19.3% (very close to the
expected sharpness parameter 20%).

How to use the probabilistic metrics on small & medium benchmarks ? 9
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β = 1

2
β = 1 β = 2

α = 0
δ = 900 δ = 1 δ = 3200

b = −0.003 & d = 0.53 b = −0.003 & d = 1.03 b = −0.003 & d = 2.05
Reli = 0.015 Reli = 0.003 Reli = 0.035
Resol = 0.12 Resol = 0.11 Resol = 0.08

α = 1

2

δ = 1000 δ = 600 δ = 7800
b = 0.27 & d = 0.53 b = 0.54 & d = 1.04 b = 1.07 & d = 2.13

Reli = 0.024 Reli = 0.02 Reli = 0.061
Resol = 0.12 Resol = 0.11 Resol = 0.08

α = 1
δ = 1300 δ = 3200 δ = 22000

b = 0.54 & d = 0.55 b = 1.08 & d = 1.07 b = 2.15 & d = 2.13
Reli = 0.048 Reli = 0.06 Reli = 0.13
Resol = 0.12 Resol = 0.11 Resol = 0.06

Figure 2.1: Probabilistic diagnoses for synthetic ensembles with different param-
eters α and β; uncertainty related to the CRPS computation: Unc = 0.57.
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Chapter 3

Practical verification

This chapter provides methodologies for evaluating -in practice- the probabilistic
assimilation systems developped on both small and medium benchmarks through
the scores described in the previous chapter. Note that the presented methods
are not unique but can be seen as recommandations for practical verification pro-
cesses.

As mentioned in the previous chapter, the probabilisitc verification is based on
statistical accumulation of independent realisations of the evaluated system. The
challenge is then -in practical situations- to aggregate a large enough verification
dataset in order to get statistically significant diagnoses. For instance, to validate
an ensemble with size around N = 50 − 100, a reasonable verification dataset
should be at least around M = 5000 (actually, the larger the better).

3.1 Small case benchmark

The small benchmark is based on the Lorenz-96 model with 40 variables (see
report 4.1 for details). The experiments based on this model are highly repro-
ducible. It is then feasible to perform several totally independent experiments for
each data assimilation tested method. Of course, to perform M = 5000 indepen-
dent experiments is out of bound, but produced ensembles and their associated
observations can be aggregated over different lead times from the same experi-
ment (for instance 1 for each assimilation cycle), or several variables of the model
can also be aggragated/gathered. Nevertheless, remind that the diagnoses are
univariate. Whatever the way to obtain the verification dataset, it is composed
with M couples ensembles/observations, denoted by (x, o) (for the SANGOMA-
standard format, see report 3.1). Note that different relevant datasets (different
periods or different sets of variables) could be necessary to get a complete eval-
uation of a probabilistic system. This generally depends on the users’ needs.
Remarks: in this chapter, the term ‘observation’ means the value used to perform
the verification; this could be either observed or non-observed data as named in
the common assimilation terminology.

All the routines mentioned below are listed and documented in report 2.4.

How to use the probabilistic metrics on small & medium benchmarks ? 11
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• How to compute the Rank Histogram for (x, o) ?
- use sangoma_ComputeHistogram.F90 with direct input (x, o).
- outputs: distribution of the aggregated observations over the ensemble
bins (Rank Histogram) and the δ score.

– the RH provides a graphical diagnosis of the reliability: flat histogram
(perfectly reliable), U-shape (underdispersive), bell-shape (overdisper-
sive), asymetry (bias).

– δ provides the numerical distance between the RH and the perfectly
flat histogram; this shows the lack of reliability, but with no information
about the characteristic of the non-reliability.

• How to compute the RCRV for (x, o) ?
- use sangoma_ComputeRCRV.F90 with direct input (x, o).
- outputs: numerical values for the normalized bias and the dispersion of
the ensembles compared to the observations.

– bias b: expressed in percentage of the ‘uncertainty’ related to the eval-
uated system (combination of ensemble spread and observation er-
ror); for instance b = 0 indicates a no-bias system and b = 1 shows a
negative bias (o−m) with the same order of magnitude of the system
‘uncertainty’.

– dispersion d: expressed in percentage of the system ‘uncertainty’; for
instance d = 1 means the ensembles are perfectly reliable, d = 2
means the ensembles are twice underdispersive and d = 0.5 means
the ensembles are twice overdispersive.

• How to compute the CRPS for (x, o) ?
- use sangoma_ComputeCRPS.F90 with direct input (x, o).
- outputs: numerical values for CRPS, Reli, Resol and Unc.

– uncertainty Unc: CRPS value if only computed with the observations
from the verification dataset; independent from the produced ensem-
bles, Unc then only depends on the observations; a large value of Unc
shows the large variability of the evaluated quantity over the chosen
verification dataset (long verification period, very different aggregated
variables); since the ability of an ensemble system is mostly based on
the comparison with the uncertainty Unc, the definition of the verifica-
tion dataset is then crucial in interpreting the skill of the system (but
this is also true for all statistical diagnoses).

– reliability Reli: this value is null for a perfectly reliable system; and
Reli > 0 shows lack of reliability of the system.

– resolution Resol: this value is null for a perfectly accurate determin-
istic system; Resol > 0 must be compared to Unc and the system is
considered as usefull when Resol ≪ Unc; as already mentioned, the
resolution is closely related to the sharpness, so that Resol ≪ Unc im-
plies σ ≪ S, where σ is the mean of the produced ensemble spreads
and S is the spread of the observations from the verification dataset
(or climatological spread).
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– CRPS: this is the global score CRPS = Reli +Resol and summarize
the global skill of the system taking into account both reliability and
resolution; CRPS is null for a perfectly reliable deterministic system.

• How to compute the Brier score & the Entropy for (x, o) ?
- define the vector threshold xth for the binary event: for each evaluated
variable x, the easiest choice is to apply the same single value th -based
on the users’ knowledge and needs- to all the realisations of the system;
but one can also apply different values th depending on relevant subsets
from the verification dataset.
- use sangoma_ComputeBRIER.F90 with direct input (x, o) and xth.
- outputs: Brier skill score + reliability/resolution decomposition, uncertainty,
Entropy.
Remark: since the Brier score is a reduction of the CRPS to the probability
space, all the general comments about the CRPS remain valid for the Brier
score.

– uncertainty Unc: Unc = pc(1− pc) where pc is the climatological prob-
abililty of occurrence of the event (over the verification dataset); this is
the reference used to normalize the Brier score and defined the skill
scores; the definition of the verification dataset is then crucial in inter-
preting the skill of the system.

– Brier skill score Bs: this score is equal to 1 for a perfectly reliable de-
terministic system and is null for a climatological system, i.e. a system
always producing pc; negative values of this scores indicates poorer
informative systems than the climatology.

– reliability: this value is null for a perfectly reliable system.

– resolution: this value is null for a perfectly accurate deterministic sys-
tem and is equal to 1 for a climatological system.

– Entropy: an informative system gives 0 < S ≪ −pc log pc.

3.2 Medium case benchmark

The medium case benchmark is based on an idealized configuration of the NEMO
primitive equation ocean model: a square and 5000-meter deep flat bottom ocean
at mid latitudes (the so called square-box SQB configuration, see details in re-
port 4.1). In this case, the practical computation of the diagnoses does not really
differ from the computation presented in the previous section (section 3.1). Nev-
ertheless, there is one crucial difference: the experiments are no longer so easily
reproducible so that the realisations of the probabibilistic system must be aggre-
gated over the grid points (3D) of the model (or over the simulated observation
locations). The balance must then be done between the size of the verification
dataset and the relevance of temporal/spatial distributions of the aggregated grid
points. While thousands grid points are available at each time step of the model,
time series of each numerical score can be computed (for instance 1 diagnosis
per assimilation cycle).

How to use the probabilistic metrics on small & medium benchmarks ? 13
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For the reliability scores (RH and RCRV), their practical computations are sim-
ilar to the ones presented in previous section 3.1. For the other scores (CRPS,
Brier and Entropy), the raw comparisons over the whole SQB-domain with the
uncertainty and the climatology could be meaningless and the skill of the prob-
abilistic system overestimated. Actually, when the the climatology is computed
over all the grid points of the SQB-domain and over a long period, its spread is
very large and the uncertainty is too. This reflects a global uncertainty. On the
other hand, the probabilistic system provides local ensembles for a specific geo-
graphical location and time. It then seems to be skillful, but it is essentially due
to the ability of the model to simulate the climatological diversity. To avoid this
skill overestimation, the anomalies with respect to the local climatology can be
considered. The local climatology is the temporal mean of the variable at each
local verification points. Then, these values are subtracted from both the ensem-
bles members and the verifications. After this translation, the CRPS, the Brier
score and the Entropy can be assessed as in section 3.1. The main effect is the
reduction of the uncertainty which then reflects the local variabilities.
In the same way, the definition of the thresholds xth for the probability space di-
agnoses can be changed compared to section 3.1. The binary events are then
locally defined by the temporal mean x and the temporal spread sx at each veri-
fication point: for instance, xth = x+ sx at each local verification point.

14 Practical verification
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Chapter 4
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