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Introduction

MyOcean is the E.U. project dedicated to the implementation of the GMES Marine
Core Service for ocean monitoring and forecasting. MyOcean aims at accurately
delivering regular and systematic information on the state of global oceans and
European regional seas at the required resolution. This information includes hind-
casts, nowcasts and forecasts describing the physical state of the ocean and its
primary ecosystem. The project also contributes to climate research by providing
time series of analysed parameters. A new FP7 project (R&D to enhance future
GMES applications in the Marine and Atmosphere areas) by the MyOcean con-
sortium aims at expansion to the MyOcean project is recently initiated. As part of
this FP7 project a proposal “Stochastic assimilation for the next generation ocean
model application (SANGOMA)” to prepare an assimilation component of the next
generation operational system of the GMES marine core service is funded.

Data assimilation (DA) is a group of methods in which the observations of the
state of a system are combined with the results from numerical model to produce
accurate estimates of all the current (and future) state variables of the system. A
data assimilation system consists of three components: a set of observations, a
dynamical model, and a data assimilation scheme.

The central concept of the data assimilation is the concept of errors, error es-
timation and error modelling. The observations have errors arising from various
sources: e.g. instrumental noise and the representativeness errors. All dynam-
ical models are imperfect with errors arising from: the approximate physics (or
biology or chemistry), that parametrises the interaction of the state variables and
the discretisation of continuum dynamics into a numerical model. In its most gen-
eral form these uncertainties are described by probability density functions, or
pdfs. Bayes Theorem tells us how to combine the information from model, the
prior, and observations, the likelihood into the so-called posterior pdf. This pdf
describes a best estimate of the state and its uncertainty, and is the solution to
the data-assimilation problem.

The most well-known application of DA is in weather forecasting problems in
which it was applied in real life for the first time in 1950′s and 1960′s to improve the
weather forecasts. A good description of the development of DA in meteorology
can be found in Delay [1991]. The DA has already proved to be useful in other
fields of application like tidal models Heemink and Kloosterhuis [1990], oceanog-
raphy Evensen [1994b], nonlinear shallow-water storm surge models Verlaan and
Heemink [1996] and atmospheric chemistry and transport modelling (e.g. Elbern
et al. [1997], Segers et al. [2000]). Among all the DA methods, four dimensional
variational data assimilation (4DVAR) called as adjoint method is the one of the
most effective and powerful approaches. The method has an advantage of di-
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rectly assimilating all the available observations distributed in time and space into
the numerical model while maintaining dynamical and physical consistency with
the model Talagrand [1997]. On the other hand since the adjoint of the numerical
model needs to be determined, which is usually complicated and time consuming
effort for a nonlinear model, the use of 4DVAR is still limited in various fields.

The Kalman filter (KF) Kalman [1960] is a sequential data assimilation al-
gorithm. For linear stochastic systems, it can be shown that the KF is an op-
timal linear estimator that minimises the variance of the estimation error Simon
[2006]. Because of its relative simplicity in implementation, the KF is suitable for
many data assimilation problems. However, for high dimensional systems such
as weather forecasting models, direct application of the KF is prohibitively expen-
sive as it involves manipulating covariance matrices of the system states. For
this reason, different modifications of the KF were proposed to reduce the com-
putational cost. These include various ensemble Kalman filters (EnKF) Anderson
[2001], Bishop et al. [2001], Burgers et al. [1998], Evensen [1994a], Evensen
and van Leeuwen [1996], Houtekamer and Mitchell [1998], Whitaker and Hamill
[2002], the error subspace-based filters Cohn and Todling [1996], Hoteit et al.
[2001, 2002], Pham et al. [1998], Verlaan and Heemink [1997], to name but a few.
For a detailed description of the above filters, readers are referred to Evensen
[2003], Nerger et al. [2005] for reviews of some of the aforementioned filters.
Roughly speaking, these modifications exploit the information of a subset in the
state space of a dynamical system, while the information of the complement set
is considered less influential, and thus ignored. Consequently, the computations
of these modified filters are normally conducted on the chosen subsets, instead
of the whole state space, so that their computational costs are reduced. For
simplicity, we may sometimes abuse the terminology by referring to all the afore-
mentioned filters as the EnKF-based methods ( EnKF methods for short).

Both variational and (en)KF methods assume the prior, so the model state,
or parameters, to be Gaussian distributed. This assumption is relaxed in parti-
cle filters, that try to solve the full nonlinear data-assimilation problem, directly
via Bayes Theorem. While particle filters were not considered efficient for high-
dimensional systems (Bengtsson et al. [2008]), recent developments allow appli-
cation of particle filters to these systems too (e.g. [Van Leeuwen, 2010]). Simul-
taneously methods are developed that are combinations of EnKF and PF (e.g.,
Van Leeuwen [2009]). Similarly, efforts are made to develop robust filters that em-
phasise on the robustness of their error estimates, so that they may have better
tolerances to possible uncertainties in assimilation. As an example, the H∞ filter
(HF) Francis [1987], Simon [2006]. An Ensemble time-local H∞ filter (EnTLHF)
is proposed recently in Luo and Hoteit [2011] as an analogy to the EnKF for high
dimensional data assimilation problems.

The main aim of the SANGOMA project is to accelerate the implementation
of flexible DA toolboxes to strengthen the connection between academics and
oceanographic community. This will also allow fast implementation and evaluation
of the new DA techniques. Present day high resolution ocean models are very
nonlinear and require a strong need for data assimilation methods that can handle
these non-linearities.

This document gives a detailed description of the DA methods used in SAN-
GOMA that include uncertainty estimation and that can be implemented for large
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dimensional ocean models. The next section gives a detail description of each in-
dividual method. This document is the final report on non-linear data-assimilation
methods for high-dimensional ocean models.
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Shared Software Modules

This section gives a detailed description of the shared modules. We start by
giving common symbol notations. These main symbol notations will be used for
all the modules throughout this document.

M non-linear model operator

M Tangent linear model

X model state vector

Xt true value of the model state vector

Xb background model state

Xa analyzed model state

Y observation vector

H observation operator

H linearized observation operator

B background error covariances

A analysis error covariances

R observation error covariances

K analysis gain Matrix

I identity Matrix

J cost function

Jb background term of the cost function

Jo observation term of the cost function

Jp penalty term of the cost function

γ parameter vector

n size of state vector

nq size of observation vector

2.1 POD Calibration Method

The adjoint method is a well-known approach to inverse modelling. The method
aims at adjusting a number of unknown control parameters on the basis of given
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data. The control parameters might be model initial conditions or model pa-
rameters Le Dimet and Talagrand [1986], Thacker and Long [1988]. An objec-
tive function is defined which measures the misfit between the solution and the
available data for any model solution over the assimilation interval. To obtain
a computationally efficient procedure this objective function is minimized with a
gradient-based algorithm where the gradient is determined by solving the adjoint
problem. The adjoint approach is computationally very efficient because one
gradient calculation requires just a single simulation of the forward model and a
single simulation of the adjoint model backward in time, irrespective of the num-
ber of parameters. The adjoint method has been used and applied successfully
to many types of inverse problems in ground water flow studies (e.g. Carrera
and Neuman [1986]), in meteorology (e.g. Courtier and Talagrand [1990]), in
oceanography (e.g. Tziperman et al. [1992]) and in shallow water flow models
(e.g. Ten-Brummelhuis et al. [1993], Lardner et al. [1993], Ulman and Wilson
[1998], Heemink et al. [2002]). One of the drawbacks of the adjoint method is
the programming effort required for the implementation of the adjoint model. Re-
search has recently been carried out on automatic generation of computer codes
for the adjoint, and adjoint compilers have now become available (see Kaminski
et al. [2003]). Even with the use of these adjoint compilers developing an adjoint
model is often a significant programming effort that hampers new applications of
the method.

Proper orthogonal decomposition (POD) is a model reduction method con-
sidered as an application of the singular value decomposition (SVD) to the ap-
proximation of general dynamical systems Antoulas [2005]. It is a data driven
projection based method originally developed by Karl Pearson Pearson [1901].
Karhunen Karhunen [1946] and Loeve Loeve [1946] had used it as statistical tool
to analyze random process data. Lumley [1967] gave the name POD, and used
the method to study turbulent flow. The POD method has application in many
fields like image processing, signal processing, data compression, oceanogra-
phy, chemical engineering and fluid mechanics (see Gunzburger [2004]). In the
POD method the projection subspace is determined by processing data obtained
from numerical simulations of high dimensional model which is expected to pro-
vide information about the dynamical behaviour of the system. The high dimen-
sional equations are projected onto the low dimensional subspace resulting in a
low dimensional model and thus reduces the CPU time of model simulation.

Vermeulen and Heemink Vermeulen and Heemink [2006] proposed a method
based on POD which shifts the minimisation into lower dimensional space and
avoids the implementation of the adjoint of the tangent linear approximation of
the original nonlinear model. In their approach, an ensemble of snapshot vectors
of forward model simulations is used to determine an approximation of the covari-
ance matrix of the model variability and a small number of leading eigenvectors of
this matrix is used to define a model subspace. By projecting the original model
onto this subspace an approximate linear reduced model is obtained. Due to the
linear character of the reduced model its adjoint can be implemented easily and
the minimisation problem is solved completely in reduced space with very low
computational cost. The method has recently been applied successfully to the
Dutch continental shelf model to estimate water depth Altaf et al. [2012].

8 Shared Software Modules
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2.1.1 Background

The discrete model for the evaluation of shallow water system from time ti to time
ti+1 can be described by an equation of the form

X(ti+1) = Mi[X(ti), γ], (2.1)

where state vector X(ti+1) ∈ <n denotes the state vector at time ti+1 and γ is the
vector of the uncertain parameters which needs to be determined. Mi is nonlinear
and deterministic dynamics operator that includes inputs. Suppose now that we
have imperfect observations Y (ti) ∈ <n

q
of the dynamical system (2.1) that are

related to the model state at time ti through

Y (ti) = HX(ti) + η(ti), (2.2)

where H : <n → <nq
is a linear observation operator that maps the model fields

on observation space and η(ti) is an unbiased, random Gaussian error vector
with covariance matrix Ri. The aim of data assimilation is to find the best esti-
mate of the system initial parameters γ based on given observations. We assume
that the difference between data and simulation results is only due to measure-
ment errors and incorrectly prescribed model parameters. The problem of the
estimation is then solved by directly minimising the objective function J

J(γ) =
∑
i

[Y (ti)−H(X(ti))]
TR−1i [Y (ti)−H(X(ti))] (2.3)

with respect to the parameters γ satisfying the discrete nonlinear forecast model
(2.1). The efficient minimisation of the objective function requires the computa-
tion of the gradient of the objective function (2.3). The adjoint method computes
the exact gradient efficiently. Regardless of the number of parameters, the time
required to compute the gradient using adjoint technique is more or less identical
and is comparable with the computational time needed for a single simulation run
of the nonlinear model (2.1). It requires one forward simulation with the original
nonlinear model (2.1) and a second additional simulation backward in time with
the adjoint model

ν(ti) = MT
i+1ν(ti+1)− 2HR−1i [Y (ti)−H(X(ti))], (2.4)

where ν(ti) represents the solution of the adjoint model. The gradient ∇J of the
objective function J with respect to each component γk of the uncertain parame-
ters vector γ is given by

∇Jk =
∑
i

− [ν(ti+1)]
T [
∂Mi[X(ti), γ]

∂γk
], k = {1, · · · , np}. (2.5)

The main hurdle in the use of adjoint method is its implementation, especially
when the forward model contains non-linearities.

2.1.2 Linearisation and reduced model formulation

The classical adjoint problem can be simplified with the hypothesis that the objec-
tive function J can be made quadratic by assuming that the nonlinear dynamics
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operator Mi can be linearised. The linearisation of nonlinear high-order model
(2.1) using the first order Taylor’s formula around the background parameter γbk
gives

4X(ti+1) =
∂Mi[Xb(ti), γ

b]

∂Xb(ti)
4X(ti) +

∑
k

∂Mi[Xb(ti), γ
b]

∂γk
∆γk (2.6)

where X is linearised state vector, Xb is the background state vector with the
prior estimated parameters vector γb and 4X is a deviation of the model from
background trajectory.

A model can be reduced if the incremental state 4X(ti+1) can be written as
linear combination

4X(ti) = Pξ(ti+1), (2.7)

where P = [p1, p2, · · · , pr] is a projection matrix such that P TP = Ir and ξ is a
reduced state vector given by

ξ(ti+1) = M̃iξ(ti) +
∑
k

∂M̃i

∂γk
∆γk (2.8)

or in matrix form (
ξ(ti+1)

∆γ

)
=

(
M̃i M̃γ

i

0 I

) (
ξ(ti)
∆γ

)
(2.9)

Here ∆γ is the control parameter vector, M̃i and M̃γ
i are simplified dynamics

operators which approximate the full Jacobians Mi and ∂Mi
∂γk

respectively:

M̃i = P TMiP, (2.10)

M̃γ
i = P T (

∂Mi

∂γ1
, · · · , ∂Mi

∂γnp
), (2.11)

The Jacobian Mi, is obtained by approximating the nonlinear dynamics operator
Mi by linearising it with respect to background state Xb. Instead of computing
this huge Jacobian by approximating the partial differential with finite difference
by perturbing the nonlinear operator Mi in the direction of each node, we perturb
along the direction of ph only:

Miph =
Mi[Xb(ti) + εph, γ

b]−Mi[Xb(ti), γ
b]

ε
, h = {1, · · · , r}, (2.12)

with ε being the size of the perturbation. The reduced dynamics operator M̃i can
now be computed by premultiplying the above formulae by P T :

M̃i = P T (
∂Mi

∂Xb(ti)
p1, · · · ,

∂Mi

∂Xb(ti)
pr). (2.13)

Notice also that only the original model simulations are needed here.The reduced
model requires less computational time as it simulates a reduced state within the
dimension r instead of the original dimension n where r < n. The dimension on
which the reduced model operates is (r+np)× (r+np) with np being the number
of estimated parameters.

10 Shared Software Modules
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2.1.3 Collection of the snapshots and POD basis

The POD method is used here to obtain an approximate low-order formulation of
the original tangent linear model. POD is an optimal technique of finding a basis
which spans an ensemble of data (snapshots) collected from an experiment or
a numerical simulation of a dynamical system. The POD modes are optimal at
approximating a given dataset. Since the reduced model is used here to esti-
mate uncertain parameters (depth D and manning coefficient cm), the snapshots
should be able to represent the behaviour of the system for these parameters.
Therefore the snapshot vectors ei ∈ <s are obtained from the perturbations ∂Mi

∂γk
along each estimated parameter γk to get a matrix

E = {e1, · · · , es}; i = {1, 2, · · · , s}. (2.14)

The dimension of this ensemble matrix E is s = np × ns, where ns is the number
of snapshot collected for each individual parameter γk. The covariance matrix Q
can be constructed from the ensemble E of the snapshots by taking the outer
product

Q = EET (2.15)

The projection matrix P used in the previous section is based on the dominant
eigenvectors (POD modes) of this covariance matrix. This covariance matrix is
usually huge as in the current application with state vector of dimension ∼ 3×106,
so direct solution of eigenvalue problem is not feasible. To shorten the calcula-
tion time necessary for solving the eigenvalue problem for this high dimensional
covariance matrix, we define a covariance matrix G as an inner product

G = EtE (2.16)

In the method of snapshots (Sirovich [1987]), one then solves the s×s eigenvalue
problem

Gzi = EtEzi = λizi, i ∈ {1, 2, · · · , s} (2.17)

where λi are the eigenvalues of the above eigenvalue problem. The eigenvectors
zi may be chosen to be orthonormal and the POD modes P are then given by:

pi = Ezi/
√
λi (2.18)

A physical explanation of POD modes is that they maximise the average energy
in the projection of data onto subspace spanned by the modes. We define a
measure ψi for the relative information to choose a low dimensional basis by
neglecting modes corresponding to the small eigenvalues:

ψi =
λi∑s
l=1 λl

100%, i = {1, 2, · · · , s} (2.19)

We collect pr (r < s) modes such that ψ1 > ψ2 > . . . > ψr and they totally explain
at least the required variance ψe,

ψe =
r∑
l=1

ψl (2.20)

The total number of eigenmodes r in the POD basis P depends on the required
accuracy of the reduced model.
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2.1.4 Approximate objective function and its adjoint

In reduced model approach, we look for an optimal solution of the (2.1) to min-
imise the approximate objective function Ĵ in an incremental way:

Ĵ(∆γ) =
∑
i

[{Y (ti)−H(Xb(ti))}−Ĥξ(ti,∆γ)]TR−1i [{Y (ti)−H(Xb(ti))}−Ĥξ(ti,∆γ)].

(2.21)
The value of the approximate objective function Ĵ is obtained by correcting the
observations Y (ti) for background state Xb(ti) which is mapped on the obser-
vational space through a mapping H and for the reduced model state ξ(ti,∆γ)
which is mapped to the observational space through mapping Ĥ with Ĥ = HP .

Since the reduced model has linear characteristics, it is easy to build an ap-
proximate adjoint model for the computation of gradient of the approximate ob-
jective function (2.21). The gradient of Ĵ with respect to ∆γ is given by

∂Ĵ

∂(∆γ)
=
∑
i

−[ν̂(ti+1)]
T ∂ξ(ti+1)

∂(∆γ)
, (2.22)

where ν̂(ti+1) is the reduced adjoint state variable (see Appendix A). Once the
gradient has been computed, the process of minimizing the approximate objective
function Ĵ is done along the direction of the gradient vector in the reduced space.

After the minimization process the initial parameters γ are updated and new
set of updated parameters γup is obtained:

γup = γ + ∆γ. (2.23)

This process of minimization is repeated several times by constructing new POD
model with new set of updated parameters γup to get optimal parameters.

2.1.5 Workflow with POD algorithm

In order to perform the whole parameter estimation process, the following steps
are executed.

1. Outer Iteration:

(a) Generate an ensemble of forward model simulations using initial pa-
rameters γb.

(b) Solve eigenvalue problem to get dominant eigenmodes pi
(c) Establish a POD reduced model and its adjoint model using eigen-

modes pi.

2. Inner Iteration:

(a) Perform optimisation iterations in the reduced space to obtain the op-
timal solution of the approximate objective function Ĵ .

(b) Update the initial parameters γb after the minimisation process obtain
new set of updated parameters γup.

3. Return to step 1 with new set of updated parameters γup until optimality
condition is achieved.

12 Shared Software Modules
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2.1.6 Convergence criterion for inner and outer iterations

The minimisation is performed using a quasi-Newton optimisation algorithm where
the Hessian of the objective function is updated using the limited Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) method. The minimisation algorithm requires con-
vergence criteria to terminate. We have defined two criterions, one is for inner
iterations and one is for outer iterations of the optimisation process. We stop
the present inner iteration α and switch to a new outer iteration β with updated
parameters γup by criterion µ, which is defined as

µ =
| Ĵαi+1 − Ĵαi |

max{| Ĵαi+1 |, 1}
< ε, (2.24)

where αi represents the ith inner iteration. The value of the ε is chosen such that
the approximate objective function Ĵ stops to change, i.e. ε = 10−4 (see Oliver
et al. [2008]). The outer iteration cycle is aborted when the terminal value of ρ is
obtained

ρ =
| Jβi − Jβi−1

|
| Jβi |

≤ κ, (2.25)

where βi stands for the ith outer iteration, κ is the terminal value.

2.1.7 Computational efficiency of the algorithm

The computational efficiency of the model-reduced approach is influenced by
three factors.

1. Ensemble generation: The computational costs of the reduced model ap-
proach are dominated by the generation of the ensemble of forward model
simulations. If the dynamics of the system does not change significantly
during the course of simulation then a smaller simulation period can be
chosen for the generation of ensemble Altaf et al. [2009]. Using this en-
semble the optimisation problem can then be solved over the whole period
of model simulation.

To achieve convergence, the POD method needs to be updated in each
outer iteration β, so the ensemble E of snapshot vectors is required in each
β. Instead of defining a new model subspace of the leading eigenvectors
in each β by generating a new ensemble of the forward model simulations,
it is possible to obtain the reduced model by projecting the original model
with updated parameters onto the same subspace.

2. Ensemble size: The efficiency of optimisation process is also influenced
by the ensemble size. A large ensemble size leads to a huge eigenvalue
problem. On the other hand, since the ensemble gives the representation of
the model behaviour with respect to each γk, it is important that the number
of snapshot vectors included in the ensemble must give this representation.
So the quality of ensemble is crucial for a reduced-order procedure to be
effective. It is possible to include only those snapshots in the ensemble for
the period where data is available.
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3. Outer iteration: The convergence criterion ρ should be carefully chosen.
It should not be chosen too small as this causes jumping of the updated
parameters γup around the optimal global solution Vermeulen and Heemink
[2006].

14 Shared Software Modules
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2.2 Efficient Particle Filters

Particle filters are ensemble data-assimilation methods that explore Bayes The-
orem directly at observation times, without assumptions of linearity and/or Gaus-
sianity. An ensemble member is called a particle. In short, at observation times
each particle is given a weight dependent on its distance to all observations
present. This results in a weighted ensemble. Then the ensemble is resam-
pled such that high-weight particles are duplicated and small-weight particles are
abandoned such that the total number of particles is unchanged, and each of the
particles has the same weight. Several resampling schemes are available in the
literature (see e.g. Doucet et al. [2001], Van Leeuwen [2009]).

It is well known that when the observation space is of order 10 or larger these
particle filters need a prohibitively large number of particles to avoid collapse of
the whole ensemble on the one particle with the highest weight. This is because
the weights tend to vary widely, related to the relatively small part of state space
where the observations are. Bengtsson et al. [2008] provide a firm proof that
particle filters of this kind will not work in the high-dimensional spaces we are
interested in.

However, importance sampling can be explored, in which the model equations
are slightly altered such that the particles end up closer to the observations at
observation times. This allows the weights of the particles to be closer to each
other, avoiding the collapse mentioned above. One has to take into account the
fact that a different model is used to get there, resulting in an extra weight on
each particle. The more a particle deviates from the original model, the smaller
this weight. The performance of the particle filters can be drastically improved in
this way, and there is even an optimal, called the optimal proposal density particle
filter. However, even this method does not work in our high-dimensional systems,
as shown convincingly by [Snyder et al., 2015].

It is possible, however, to construct particle filters that do not have this limi-
tation to low-dimensional systems. They are based on the notion that one can
set a target weights and move all particles such in state space that they obtain a
weight that is equivalent to, or exactly equal to the target weight. This is possible
because the two weights related to observations and to original-model deviations
are competing: the closer the model is pulled towards the observations the higher
the observational weight, but the larger the deviation from the original model, so
the lower that part of the weight, and vice-versa. Examples of these particle filters
are the Equivalent-Weights Particle Filter and the Implicit Equal-Weight Particle
Filter. These methods have now been explored in very high-dimensional applica-
tions, like climate models and the NEMO ocean circulation model.

2.2.1 Description

For a proper derivation of the equations see Ades and van Leeuwen [2013], and
Zhu et al. [2015].

2.2.2 The basics

Particle filters, like ensemble Kalman filters, are variants of Monte Carlo methods
in which the probability distribution of the model state given some observations
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is approximated by a number of particles; however, unlike ensemble Kalman fil-
ters, particle filters are fully non-linear data assimilation techniques. While par-
ticle filters are not a new concept, until very recently they have been deemed to
be computationally unfeasible for large-dimensional systems due to the filter de-
generacy problem [Snyder et al., 2008, Van Leeuwen, 2009]. However, recently
there have been new developments in the field and particle filter variants have
emerged that have been shown to work for large dimensional systems with a
limited number of particles. These methods exploit the future observational infor-
mation by relaxing particles towards the future observations. In this document we
will consider two such variants of the particle filters: the equivalent weights par-
ticle filter [EWPF, Van Leeuwen, 2010, 2011, Ades and van Leeuwen, 2015] and
the auxiliary particle filter [Pitt and Shephard, 1999]. Another interesting particle
filter for high-dimensional systems, the so called implicit particle filter [Chorin and
Tu, 2009, Chorin et al., 2010, Morzfeld et al., 2012, Van Leeuwen, 2009], is not
discussed here as it needs a 4D-Var minimisation in each particle.

The probability distribution function (pdf) in particle filtering, represented by
N particles or ensemble members at time k, is given by

p
(
x(k)

)
=

1

N

N∑
j=1

δ
(
x(k) − x

(k)
j

)
, (2.26)

where x(k) ∈ Rn is the n-dimensional state of the system that has been integrated
forward in time using the stochastic forward model and δ(x) is a Dirac-delta func-
tion. We let time k to be time of a current set of observations with the previous
observation set at time 0. Then the stochastic forward model for times 0 < m < k
for each particle j = 1, ..., N is given by

x
(m)
j =Mm

(
x
(m−1)
j

)
+ ε

(m)
j , (2.27)

where ε
(m)
j ∈ Rn are random terms representing the model error distributed ac-

cording to a given covariance matrix Q andMm : Rn → Rn is the deterministic
model from time m− 1 to m. Thus, the model state transition from time m− 1 to
m is fully described by the transition density given by

p
(
x
(m)
j |x

(m−1)
j

)
= N

(
Mm

(
x(m−1)

)
,Q
)
. (2.28)

Using Bayes theorem and the Markovian property of the model, the full pos-
terior at observation time k is written as

p
(
x
(k)
j |y

(k)
)

=

N∑
j=1

w
(k)
j δ

(
x(k) − x

(k)
j

)
(2.29)

where δ(x) is a Dirac-delta function and weights w(k)
j are given by

w
(k)
j ∝ p

(
y(k)|x(k)

j

)
p
(
x
(k)
j |x

(k−1)
j

)
w

(k−1)
j (2.30)

and wk−1j are the product of all the weights from all time steps 0 < m ≤ k−1. The
conditional pdf p

(
y(k)|x(k)

)
is the pdf of the observations given the model state
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x(k) which is often taken to be Gaussian

p
(

y(k)|x(k)
)
∝ exp

[
−1

2

(
y(k) −Hk

(
x(k)

))T
R−1

(
y(k) −Hk

(
x(k)

))]
. (2.31)

However, as mentioned at the beginning of this section, to apply a particle
filter to a high-dimensional system additional information is needed to limit the
search space of the filter. Next we discuss two particular particle filters which
have been shown to work in high-dimensional systems with a very limited number
of particles, namely the Equivalent-Weights Particle Filter, and the Implicit Equal-
Weight Particle Filter

2.2.3 Making Particle Filters efficient

We aim to ensure that equally significant particles are picked from the poste-
rior density. To do this we have to ensure that all particles end up in the high-
probability area of the posterior pdf, and that they have very similar, or even equal,
weights. For the former we need a scheme that pulls the particles towards the
observations. Several methods can be used for this, including traditional meth-
ods like 4Dvar and Ensemble Kalman Filters and Smoothers. However, the main
ingredient in efficient particle filters is the step that ensures that the weights of
the different particles are close before any resampling step.

For a Markovian system with observational errors that are independent from
one time to another, the posterior pdf can be written as

p(xn|y1:n) =
p(yn|xn)

p(yn)

∫
p(xn|xn−1)p(xn−1|y1:n−1)dxn−1 (2.32)

It is assumed that the particle weights in the ensemble at previous time-step
n− 1 are equal:

p(xn−1|y1:n−1) =
1

N

N∑
i=1

δ(xn−1 − xn−1i ) (2.33)

As a consequence of plugging equation (2.33) into equation (2.32), it is clear
that

p(xn|y1:n) =
1

N

N∑
i=1

p(yn|xn)p(xn|xn−1i )

p(yn)
(2.34)

One can now multiply the numerator and denominator of equation (2.34) by
the same factor q(xn|xn−1, yn), in which xn−1

1:N is defined as the collection of all
particles at time n− 1.

p(xn|y1:n) =
1

N

N∑
i=1

p(yn|xn)

p(yn)

p(xn|xn−1i )

q(xn|xn−1
1:N , yn)

q(xn|xn−1
1:N , yn) (2.35)

where the support of q(xn|xn−1
1:N , yn) should be equal to or larger than that of

p(xn|xn−1). q(xn|xn−1
1:N , yn) is the so-called proposal transition density .
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Observations every time-step is the simplest setup to analyse the effect of
drawing samples from the proposal transition density q(xn|xn−1

1:N , yn), instead of
the original transition density p(xn|xn−1i ). This leads the posterior pdf to be epressed
as:

p(xn|y1:n) =
1

N

N∑
i=1

p(yn|xni )

p(yn)

p(xni |x
n−1
i )

q(xni |x
n−1
1:N , yn)

δ(xn − xni ) (2.36)

Consequently the posterior pdf of model state at time-step n can be written
as

p(xn|y1:n) =
1

N

N∑
i=1

wiδ(x
n − xni ) (2.37)

where wi is the particle weights given by

wi =
p(yn|xni )

p(yn)

p(xni |x
n−1
i )

q(xni |x
n−1
1:N , yn)

(2.38)

Now assuming that the model system is Markovian and using Bayes’ theorem,
the numerator in the expression for the weights can be expressed as

p(yn|xn)p(xn|xn−1i ) = p(xn|xn−1i , yn)p(yn|xn−1i ) (2.39)

Therefore the particle weights of ensemble i at observed time-step becomes

wi =
p(xni |x

n−1
i , yn)p(yn|xn−1i )

p(yn)q(xni |x
n−1
1:N , yn)

(2.40)

In the so-called optimal proposal density [Doucet et al., 2000] one chooses

q(xni |xn−1
1:N , yn) = p(xni |xn−1i , yn)

, leading to weights wi ∝ p(yn|xn−1i ). For systems with a large number of inde-
pendent observations these weights are degenerate, see e.g. [Ades and van
Leeuwen, 2013].

Two efficient particle filter schemes have been developed using this idea. The
first one, the Equivalent-Weights Particle Filter (EWPF), has been implemented
in the majority of the software systems developed in SANGOMA. The second
one has recently been developed and turns out to be much more robust than the
EWPF. It is called the Implicit Equal-Weights Particle Filter (IEWPF). Both are
described below.

The Equivalent-Weights Particle Filter

The EWPF works as follows

1) Determine the maximum weight each particle can reach using a determin-
istic step.

2) Choose a target weight based on these maximal weights that a certain
percentage of particles can reach. For instance, if the target weight is set to
the lowest of the maximal weights we keep 100% of the particles. A choice
of 50% will mean that the target weight is set to the medium value of the
maximal weights.
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3) Calculate the position in state space of each particle such that it has a
weight exactly equal to the target weight.

4) Add a small random perturbation to each particle and recalculate its weight.

5) Resample the particles such that their weights are equal again.

When the error in the model equations is additive Gaussian and the observa-
tion operator is linear an analytical solution can be found for the maximum weight
for each particle I, or actually, the minimum of minus the log of that weight:

− log(wi) ∝ φi = (yn −HM(xn−1i ))T (HQHT +R)−1(yn −HM(xn−1i )) (2.41)

Then a target weights is set from these φi’s. The target weights splits the ensem-
ble of particles in two: those that have a higher maximal weight, and those with a
lower maximal weight. The latter are abandoned at this point, and will come back
in the resampling step 5).

For the others, there is an infinite number of ways to move a particle in state
space such that it reaches the target weight. In the EWPF that problem is solved
by assuming:

x̂ni =M(xn−1i ) + αi(Q
−1 +HTR−1H)−1HTR−1(yn −HM(xn−1i )) (2.42)

in which αi is a scalar. Doing this the number of solutions is reduced to two, so
two values for αi. Note that alphai = 1 pushes the particle to its maximum weight
position. Also note the resemblance of this solution to that of the Kalman Filter,
replacing Q with the ensemble covariance.

In the workflow below the solutions for αi are presented, as is the shape of
the random forcing.

The Implicit Equal-Weights Particle Filter

This scheme is very similar to that of the EWPF:

1) Determine the maximum weight each particle can reach using a determin-
istic step.

2) Choose a target weight based on these maximal weights that a certain
percentage of particles can reach. Typically the target weight is chosen
as the minimum of the maximal weights, so that all particles are kept.

3) Draw a random perturbation vector for each particle, and add this to the
particle position that ensures maximal weight.

4) Scale each random vector such that each particle will reach the target
weight.

5) Resample the particles such that their weights are equal in case the kept
percentage is lower than 100%..
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The implicit part of our scheme follows from drawing samples implicitly from
a standard Gaussian distributed proposal density q(ξ) instead of the original one
q(xn|xn−1

1:N , yn) [Chorin and Tu, 2009]. These two pdfs are related by:

q(xn|xn−1
1:N , yn) =

q(ξ)

||dxdξ ||
(2.43)

where ||dxdξ || denotes the absolute value of the determinant of the Jacobian matrix
of the RNx → RNx transformation xi = g(ξi). To find a solution of this underde-
termined situation, the implicit relation between variable xni and ξ is defined as

xni = xai + α
1/2
i P 1/2ξni (2.44)

with xai the mode of q(xni |x
n−1
i , yn), P a measure of the width of that pdf, and αi

a scalar. In the implicit particle filter of Chorin et al. [2010] αi is determined by
choosing the proposal density as the optimal proposal density, so again

q(xni |xn−1
1:N , yn) = p(xni |xn−1i , yn),

and using the expression for xni directly in

p(xni |xn−1i , yn) =
q(ξ)

||dxdξ ||
(2.45)

leading to a nonlinear scalar equation for αi. Therefore, when observations are
present every time step the implicit particle filter is the optimal proposal particle
filter with a smart sampling scheme.

Our scheme is different in that we choose the αi such that all particles get the
same weight wtarget, so we determine the scalar αi for each particle from:

wi =
p(xni |x

n−1
i , yn)p(yn|xn−1i )

Np(yn)q(xni |x
n−1
1:N , yn)

= wtarget (2.46)

in which xn−11:N denotes the ensemble of particles at time n−1. So we allow the
proposal density to depend on all previous particles, and not just on one of them.
This ensures that the filter is not degenerate in systems with arbitrary dimensions
and an arbitrary number of independent observations.

We can expand this as follows. Sampling implicitly from q(ξ) instead of

q(xni |xn−1
1:N , yn),

the particle weights are now given by

wi =
p(xni |x

n−1
i , yn)p(yn|xn−1i )

q(ξ)

∣∣∣∣∣∣∣∣dxdξ
∣∣∣∣∣∣∣∣ · wprevi (2.47)

where q(ξ) is the standard Gaussian distribution and wprevi introduces the weight
from previous time-steps. This equation is the basis of our new scheme.
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Assuming now that observation errors and model errors are Gaussian, and
the observation operator H ∈ RNy×Nx is assumed to be linear, we find:

p(yn|xn)p(xn|xn−1i )

=
1

A
exp

[
−1

2
(yn −Hxn)TR−1(yn −Hxn)

− 1

2
(xn − f(xn−1i ))TQ−1(xn − f(xn−1i ))

]
=

1

A
exp

(
−1

2
(xn − x̂ni )TP−1(xn − x̂ni )

)
exp(−1

2
φi)

= p(xn|xn−1i , yn)p(yn|xn−1i ) (2.48)

where
P = (Q−1 +HTR−1H)−1 (2.49)

x̂ni =M(xn−1i ) + (Q−1 +HTR−1H)−1HTR−1(yn −HM(xn−1i )) (2.50)

φi = (yn −HM(xn−1i ))T (HQHT +R)−1(yn −HM(xn−1i )) (2.51)

xai in equation (2.75) is the mode of p(xn|xn−1i , yn), given by

xai = x̂ni =M(xn−1i ) +QHT (HQHT +R)−1(yn −HM(xn−1i )) (2.52)

This leads to a complicated nonlinear differential equation for αi that involves
the determinant of P . Since we are interested in high-dimensional problems we
consider this equation in the limit of large state dimension Nx. In that limit it turns
out that we can integrate this equation, leading to the much simpler equation:

(αi − 1)γi −Nx log(αi) + φi − logwprevi − C = 0. (2.53)

in which C = − logwtarget. This equation could be approximated by using numer-
ical methods, such as Newton method, etc., but interestingly analytical solutions
based on the so-called Lambert W function do exist. We do not elaborate on
these here.

Between observations: Relaxation steps

If the system is not observed every time step the schemes mentioned above can
be used over the time window between observations. No analytical solutions can
be obtained in that case, and the solution has to be found by iterations. However,
this procedure is rather expensive as it typically involves solving a problem sim-
ilar to a 4DVar on each particle. Interestingly, ECMWF is using an ensemble of
4DVars for their weather forecasting scheme, and it is relatively easy to turn this
into a set of particles using 4DVar as proposal.

However, in general this is a rather expensive procedure, and typically sim-
pler methods are employed between observations. Although we can ensure that
Bayes theorem is fulfilled exactly for each particle, the schemes will be less effi-
cient. In the following we demonstrate the use of relaxation between observation
times. We use the future observations to guide or nudge the particles at time

Final Document 21

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 3.5

m towards observations at next time k > m by using a modified forward model
instead of (2.27)

x
(m)
j = Mm

(
x
(m−1)
j

)
+ ε̃

(m)
j +

+Υ
[
y(k) −Hk

(
x
(m−1)
j

)]
, (2.54)

where ε̃
(m)
j ∈ Rn are random terms representing the model error distributed ac-

cording to a given covariance matrix Q̃1,Mm is the same deterministic model as
in equation (2.27), Υ is a relaxation matrix which we will chose later, y(k) ∈ Rpk
is the vector of pk observations at time k and Hk : Rn → Rpk is the observation
operator mapping model space in to observation space. Note that the observa-
tions y(k) are at later time k > m. Then the modified transition density is given
by

q
(
x
(m)
j |x

(m−1)
j , y(k)

)
= N

(
Mm

(
x(m−1)

)
+

+Υ
[
y(k) −Hk

(
x(m−1)

)]
,Q
)
, (2.55)

and modified weights w(k)
j are given by

w
(k)
j ∝ p

(
y(k)|x(k)

j

) p
(
x
(k)
j |x

(k−1)
j

)
q
(
x
(k)
j |x

(k−1)
j , y(k)

)w(k−1)
j (2.56)

and w(k−1)
j are the product of all the weights from all time steps up to time k − 1,

i.e. fractions
p
(
x(m)

j |x(m−1)
j

)
q
(
x(m)

j |x(m−1)
j ,y(k)

) for each time 0 < m < k. The conditional pdf

p
(
y(k)|x(k)

)
remains the same as in Eqn. (2.31).

This simple modification of the forward model to include information about
future observations along with the relaxation matrix Υ limits the search space
of the particles to high probability space thus making it possible to use EWPF
method for high-dimensional systems with only a very limited number of particles,
i.e. where number of particles are much less than the size of the state space
(N � n).

2.2.4 Workflow

In this scheme we perform the following steps:

1. Before the observation time k for each time step 0 < m < k and for each
particle j = 1, ..., N :

(a) Advect the model state in time using Eqn. (2.54) with

Υ(m) = ρ(m)Q
(

H(k)
)T [

H(k)Q
(

H(k)
)T

+ R(k)

]−1
(2.57)

1The model error covariance matrices are usually assumed to be equal, i.e. Q̃ = Q.
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with Q being the covariance matrix of model errors, R the covariance
matrix of observation errors, and H(k) the linearised version of the ob-
servation operator Hk.
The scalar ρ(m) determines the strength of the nudging at each model
time step and it is crucial to get the strength of the nudging right
for each forward model. For example, for strongly non-linear mod-
els nudging should only be significant if current time step m is very
close to the next observation time k and negligible otherwise. This is
because in non-linear models nudging particles towards a future ob-
servation that are far enough in time would result in particles entering
wrong or unrealistic attractors for time m and most likely resulting in
filter divergence. However, for forward models that are linear or close
to linear (also if time between observations is small enough for a non-
linear model) nudging term ρ(m) could be increased linearly from the
time of the previous observation to next one.

(b) Compute weights

w
(m)
j = w

(m−1)
j

p
(
x
(m)
j |x

(m−1)
j

)
q
(
x
(m)
j |x

(m−1)
j , y(k)

) , (2.58)

where both transition densities are assumed to be Gaussian and are
calculated according to

p
(
x
(m)
j |x

(m−1)
j

)
= exp

[
−1

2

(
Υ
[
y(k) −H(k)x

(m)
j

]
+ ε̃

(m)
j

)T
Q−1(

Υ
[
y(k) −H(k)x

(m)
j

]
+ ε̃

(m)
j

)]
(2.59)

q
(
x
(m)
j |x

(m−1)
j , yk

)
= exp

[
−1

2

(
ε̃
(m)
j

)T
Q−1ε̃

(m)
j

]
. (2.60)

2. At observation time k the EWPF proceeds with:

(a) Calculate the maximum weight value for each particle

Cj = − logw
(k−1)
j +

1

2

[
y(k) −Hk

(
Mk

(
x
(k−1)
j

))]T
·[

H(k)Q
(

H(k)
)T

+ R

]−1 [
y(k) −Hk

(
Mk

(
x
(k−1)
j

))]
. (2.61)

Then choose a target weight C such that 80% (or any other suitable
percentage) of particles can reach this weight, i.e. that 80% of Cj are
less than C.

(b) Find the deterministic particle analysis update (for the particles which
can reach the target weight C) via

x̌
(k)
j =Mk

(
x
(k−1)
j

)
+ αjΥd

(k)
j , (2.62)
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where

αj = 1−

√
1− bj

aj
(2.63)

aj =
1

2

(
d
(k)
j

)T
R−1H(k)Υd

(k)
j (2.64)

bj =
1

2

(
d
(k)
j

)T
R−1d

(k)
j − C − logw

(k−1)
j (2.65)

d
(k)
j = y(k) −H(k)

(
x
(k)
j

)
. (2.66)

(c) Perturb each particle with random perturbations

x
(k)
j = x̌

(k)
j + dε

(k)
j (2.67)

where the perturbation dε
(k)
j is drawn from a mixture of uniform and

Gaussian distributions, given by

dε ∼ (1− ε)Q1/2U(−γU I,+γU I) + εN (0, γ2NQ). (2.68)

Choosing ε = 0.001/N ensures that we mainly sample from the uni-
form distribution, but the possibility to sample from the Gaussian dis-
tribution ensures the support of the proposal density is at least equal
to the support of the model prior. Other parameters are chosen to be
as follows:

γU = 10−5 (2.69)

γN =
2n/2εγnU

πn/2(1− ε)
. (2.70)

(d) Calculate the full weights at time k

w
(k)
j = w

(k−1)
j

p
(
x
(k)
j |x

(k−1)
j

)
p
(

y(k)|x(k)
j

)
q
(
x
(k)
j |x

(k−1)
j , y(k)

) . (2.71)

taking the final perturbation into the account using the transition den-
sity

q
(
x
(k)
j |x

(k−1)
j , y(k)

)
= (1− ε)Q1/2U(−γU I,+γU I) +

+εN (0, γ2NQ). (2.72)

(e) Resample to obtain a full ensemble again, e.g. using universal resam-
pling (see Appendix). After resampling the weights of the resampled
particles are set to be equal, i.e. w(k)

j = 1/N .

3. For the IEWPF we take the following steps at observation times k:
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(a) Calculate the maximum weight value for each particle

Cj = − logw
(k−1)
j +

1

2

[
y(k) −Hk

(
Mk

(
x
(k−1)
j

))]T
·[

H(k)Q
(

H(k)
)T

+ R

]−1 [
y(k) −Hk

(
Mk

(
x
(k−1)
j

))]
. (2.73)

Then choose a target weight C such that a certain percentage of par-
ticles can reach this weight. In the IEWPF we typically use 100%.

(b) Draw a random vector ξi of size Nx from N(0, I), one for each particle.
(c) For each particle i calculate the scalar αi from

(αi − 1)γi −Nx log(αi) + φi − logwprevi − C = 0. (2.74)

in which C = − logwtarget, and γi = ξTi ξ. There are two solutions to
this equation that are equally likely, so we choose one of them with a
50% change, and do this for each particle. The new particles are now
given by:

xni = xai + α
1/2
i P 1/2ξni (2.75)

2.2.5 Computational Costs

The computational costs are as follows:

1. Propagate the ensemble forward in time to the next observation. It is noted
that one has to include model errors, which calls for drawing a random
vector of size Nx from a standard Gaussian, and an extra matrix-vector
multiplication of size N2

x . The matrix is Q1/2.

2. At each time step calculate the weight related to the relaxation term. All
factors are available from the model time step, so we only need to calculate
a vector-matrix-vector product of order N2

x multiplications. This is negligible
compared to the calculation of the model time step itself. Interestingly, we
don’t need the inverse of matrix Q as the Υ factor contains Q too, and ε̃

(m)
j

is proportional to Q1/2. The result is that we need Q1/2, which we already
need for the stochastic term in the model equation.

3. At observation terms calculate the maximal weight for each particle. This
consists of a vector-matrix-vector product of order N2

y multiplications, and
the inverse of matrix HQHT +R. If Ny is large the procedure is to or solve
for a in (HQHT + R)a = b and multiply the result by a vector. This is
typically of order N2

y multiple-add operations.

4. In the EWPF we need to calculate the scalar αi for each particle, which
means a vector-matrix-vector multiplication of order N2

y . This is than fol-
lowed by a draw of an Nx dimensional vector from a uniform density, fol-
lowed by a matrix-vector multiplication of size N2

x .

5. In the IEWPF we need to draw draw random vectors from N(0, P ) in which
P−1 = Q−1 + HTR−1H. This looks complicated, but in fact we can draw
random vectors from N(0, Q) and transform them as in the ETKF.
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2.3 Nonlinear Ensemble Transform Filter

2.3.1 Description

The nonlinear ensemble transform filter (NETF), which was recently introduced
in [Tödter and Ahrens, 2015] was implemented in PDAF and further tested using
the medium case benchmark.

While the EnKFs are based on a Gaussian assumption for the prior ensemble,
the transformation in the NETF is designed to exactly match the first two moments
of Bayes theorem [see Tödter and Ahrens, 2015, for a derivation of the NETF].

The ensemble mean at time tk is computed as xk = 1
mXk1, using the vector

1 = (1, . . . , 1)T of length m. Defining the following matrix,

Xk =
[
xk, . . . ,xk

]
=

1

m
Xk11T , (2.76)

the ensemble perturbation matrix X′k is given by

X′k = Xk −Xk = XkS, where S = Im −
1

m
11T . (2.77)

Here, I denotes the identity matrix. Hence, the matrix S subtracts the ensemble
mean from Xk.

The NETF transforms the forecast ensemble into an analysis ensemble by
applying a weight vector and a transform matrix to the forecast mean and per-
turbations, respectively. As most particle filters, the NETF uses the likelihood
weights that arise from Bayes theorem. For normally distributed observation er-
rors, the weight of each member is given by

wi ∝ N
(
y;H

(
x
f(i)
k

)
,Rk

)
(2.78)

∝ exp

[
−1

2

(
y − y

f(i)
k

)T
R−1k

(
y − y

f(i)
k

)]
, (2.79)

where y
f(i)
k = Hk(x

f(i)
k ). The weights are normalized so that they sum up to one.

Before the weights are computed, the ensemble perturbations should be inflated
by an inflation factor γ > 1. The weight vector and transform matrix of the NETF
are computed from these weights as follows [Tödter and Ahrens, 2015]:

w = (w1, . . . , wm)T (2.80)

T =
√
m
[
Diag(w)−wwT

]1/2
. (2.81)

Here, Diag(w) is a diagonal matrix that contains the weights wi on the diagonal.
To complete the algorithm, the analysis perturbations are computed as

Xa′
k = Xf ′

k TΛ, (2.82)

where Λ is an random orthogonal matrix [see Pham, 2001]. Finally, the mean is
updated via

X
a
k = X

f
k + Xf ′

k w1T, (2.83)
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Thus, the new analysis ensemble is given by

Xa
k = X

a
k + Xa′

k . (2.84)

The NETF has to be applied in combination with localization as described in
[Tödter and Ahrens, 2015] for high-dimensional systems.

2.3.2 Workflow

The workflow of the NETF is presented here as given in Tödter and Ahrens [2015]
paper. This can be used with or without localisation (skip first three steps if lo-
calisation not needed) and to distinguish between global quantities from local we
use subscript g for global and nothing for local variables. that is, we begin with
the prior ensemble {xfg} of size m, stored in the d ×m ensemble matrix Xf

g , and
the k-dimensional observation yg with error covariance Rg.

1. Compute the predicted observations by applying the observation operator
to the prior ensemble, y

f(i)
g = H

(
xf(i)g

)
, and put the resulting vectors into a

k ×m ensemble matrix Yf(i).

2. Prepare an appropriate orthogonal, mean-preserving random rotation ma-
trix Lambdag.

3. This step selects the data for the local analysis: extract all rows of Xf that
belong to the current local domain to obtain the local ensemble states, Xf

g .
Select the entries of yg that are to be considered for the local analysis (e.g.
observations within a specified localisation radius) and the corresponding
rows and columns of Rg which forms the local observation vector y and
covariance matrix R. Accordingly, choose the same rows from Yf

g , form-
ing Yf , which contains the ensemble’s counterparts yf(i) of the localised
observations y.

4. If desired, multiply the entries of R−1 with an appropriate weight function to
reduce the influence of more distant observations.

5. Calculate the Bayesian weights of the ensemble states using the observa-
tional likelihood density, collect them in the weight vector w, and normalise
it:

wi ∝ p
(

y|xf(i)
)
,

∑
wi = 1.

For example, if Gaussian observation errors are used, evaluate

wi ∝ exp

[
−1

2
(y − yf(i))TR−1(y − yf(i))

]
.

6. Compute the (local) analysis mean by

xa = xf + X′fw.
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7. Form the matrix A, with W = diag(w), and compute the transform matrix:

T = A1/2 = (W −wwT )1/2.

Use the symmetric square root by applying a singular value decomposition
to A.

8. Transform the prior ensemble perturbations into analysis perturbations by
applying the transform matrix and random rotation:

X′a =
√
mX′fWΛg.

9. Recentre the ensemble perturbations to obtain the (local) analysis ensem-
ble:

Xa = X
a

+ X′f .

10. Having performed steps 3 to 9 for all local domains, form the global anal-
ysis ensemble: Reverse the first procedure of step 3 by inserting the local
analysis ensemble matrices (the outputs of step 9) into the corresponding
rows of the d×m matrix Xa

g .

2.3.3 Computational Cost

In the original paper of NETF Tödter and Ahrens [2015] summarises the com-
putational cost of the NETF stating that the computational expense of NETF is
similar to the Ensemble Transform Kalman Filter (ETKF) [Lawson and Hansen,
2004, Sakov et al., 2012] for a given ensemble size since analysis is performed in
the m-dimensional subspace spanned by the ensemble members. In addition the
NETF filter does not involve the computation of an inverse matrix thus preventing
computational instabilities caused by considerably small singular values, which
are sometimes neglected in ETKF implementations for that reason [Sakov et al.,
2012]. If localisation is applied to NETF, the local analysis are independent and
can be computed in parallel as for the ETKF. The generation of random rotation
matrices consumes additional resources; however, it is possible to resort to a col-
lection of pre-calculated random matrices since they only depend on ensemble
size m.

2.4 Multivariate Rank Histogram Filter

Most data assimilation methods are transformation methods: At analysis times,
each particle is transformed, i.e. modified by a correction designed to take it
closer to the observations. Transform methods typically include the numerous
variants of the Ensemble Kalman Filter. Only transformation methods have been
successfully used for high-dimensional problems so far. However, they do gener-
ally not resolve the full non-Gaussian data assimilation problem (typically, where
the particles form multimodal probability densities). As illustrated by Metref et al.
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[2014], this is because they always rely on linear considerations to correct unob-
served variables after the correction of observed variables.

By contrast, sampling methods do not modify particles, but rather select the
particles closest to the observations. The original particle filter and the Sequential
Importance Resampling filter are the best-known sampling methods. Sampling
methods are attractive because they theoretically solve the full non-Gaussian
data assimilation problem. However, they are well known to fail in large dimen-
sions problems with large numbers of observations.

A Holy Graal of data assimilation would be a transformation method, applica-
ble to high-dimensional problems, which solves the full non-Gaussian problem.
This is the reason for developing the EWPF, presented previously, and the Mul-
tivariate Rank Histogram Filter (MRHF). A detailed description of the MRHF is
provided in Metref et al. [2014].

2.4.1 Description

For the present exposition, it is assumed that the state vector is composed of only
3 scalar variables: X = (x, y, z), and that only the last one z is observed with zo,
characterised by the likelihood p(zo|z). Extension to larger state vectors and more
independent observations is straightforward. Given the prior probability density
p(x, y, z) and the likelihood p(zo|z), the assimilation of zo is meant to find the pos-
terior, conditional density p(x, y, z|zo). The latter is given by Bayes’ rule. After in-
troducing the Knothe-Rosenblalt rearrangement ( p(x, y, z) = p(z)p(x|z)p(y|x, z)
), the posterior density writes:

p(x, y, z|zo) = p(z|zo)p(x|z, zo)p(y|x, z, zo). (2.85)

This density can be calculated sequentially by first calculate p(z|zo), then p(x|z, zo),
and p(y|x, z, zo). This is actually what some implementations of the EnKF do, see
for example [Anderson, 2003]. The correction on z for each particle is computed
with

δzi =
Var(z)

Var(z) + Var(ε)
(zo − zi − εi), (2.86)

where i is the particle index, Var(z) is the variance of z computed from the ensem-
ble, ε is the observation error, εi a realisation of this error. Then, non-observed
variables are corrected using a linear regression of the z corrections. For x,
member i, this writes:

δxi =
Cov(x, z)

Var(z)
δzi. (2.87)

Here, Cov(x, z) represents the covariance between x and z computed from the
ensemble. Corrections for other non-observed variables (y in our case) take a
similar shape. In particular, the conditioning to x for y (Eq. 2.85) does not affect
the nature of the correction. This is due to the Gaussian assumption hidden
behind Eq. 2.86 and 2.87, which are nothing less than the Best Linear Unbiased
Estimate (BLUE) equations in a developed format.

It is well known that Eqns. 2.86 and 2.87 provide an optimal correction when
the prior ensemble and the likelihood are Gaussian. It is not optimal, and it can
even be detrimental to use these formulas for non-Gaussian priors. Equation 2.86
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is typically inadequate if the prior density of z is bimodal, because the analysis
can create non-physical estimates between the two modes. Similar problems
can arise with Eqn. 2.87, when x and z exhibits a strongly nonlinear statistical
relationship. This is illustrated by Fig. 2.1 with a simple example.

Figure 2.1: Illustration of an ensemble analysis in a strongly nonlinear case:
EnKF on the left, MRHF on the right. The scatterplots show ensembles in the
space of 2 variables X and Y . The green ensembles are the priors. Only Y is
observed; The observation (along with error standard deviation) is materialised
by the solid (resp. dashed) lines. The red dots represents the analysed ensem-
bles. By creates particles where there was no particle in the prior, the EnKF does
not comply with the prior and possibly results in unrealistic physical states.

The MRHF is designed to solve Eq. 2.85 sequentially, as the EnKF in the form
of Anderson [2003], but using general transformations for z and x, in contrast
with Eq. 2.86 and 2.87 that are very specific to the linear-Gaussian framework.
Following the method proposed by Anderson [2010] under the name of Rank His-
togram Filter (RHF), the continuous prior density for z is represented as a rank
histogram. The histogram is composed of N − 1 bounded regions partitioned by
the sorted ensemble members (the order statistics of the problem) and two un-
bounded regions on the edge. In each inner region, a density value is assigned
so that the region contains a probability mass of 1

N+1 . The two outer regions are
covered by tails of probability mass 1

N+1 as well; Their shape may be chosen
freely, and this may actually be a key element for the success of the RHF Ander-
son [2010]. The likelihood p(zo|z), known analytically from the observation error
density, is discretised on the same grid as p(z), and the two functions are multi-
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plied point-wise to provide a constant piecewise expression (after normalisation)
of the posterior density p(z|zo). The analysis ensemble is finally obtained using a
(deterministic) procedure of inversion of the cumulative distribution function.

In the original form of RHF, proposed by Anderson [2010], the corrections on
z particles are calculated by the difference between the posterior and the prior
values of z, and used with Eq. 2.87 to correct non-observed variables. Correc-
tions are still performed using a linear regression. In contrast, the MRHF extends
the nonlinear, Rank Histogram-based analysis to non-observed variables. Let
{zai }i=1,...,N be the posterior ensemble of the observed variable z, i.e. a sample
of p(z|zo). Consider the first unobserved variable, x in Eq. 2.85. The MRHF
analysis determines xai , the x analysis value for particle i, by deterministically
sampling the conditional density pai (x) ≡ p(x|z = zai ). This density must first be
formed. Some steps of the procedure are illustrated on Fig. 2.2. The green dots
represent the prior ensemble in the X−Z plane; the blue dots at X = 0 represent
the z analysis ensemble {zai }i=1,...,N . The red line is the observation realisation.
The following process is repeated for i = 1, ..., N . For a given i, a few particles
are selected in the prior ensemble (green dots with blue circles), whose z values
lie in the neighbourhood of zai (blue dot with red triangle) along the z direction.
The details of the selection process, based on simple Euclidean distances, are
given in Metref et al. [2014]. Applying the rank histogram approach to the x values
of the selected particles, a one-dimensional density is then formed to represent
pai (x).

To follow Eq. 2.85, one approach would be to draw a random realisation from
this density to provide xai . This, however, is far from optimal from the physical
viewpoint, because it can generate large corrections resulting in physical insta-
bilities and imbalances. In Fig. 2.2 for instance, the prior particle (green dot with
red triangle) is in the right hand side mode of the distribution. Since the observa-
tion does not enable one to know in which mode the truth (red dot) actually is, it
makes sense to try to keep this particle in its mode of origin, thus minimising its
modification.

Instead of a random draw in pai (x) which could arbitrarily move the particle to
the left hand side mode, the following steps are proposed:

• With a similar selection and a rank histogram process, form the density of
x conditioned to the background value of z: pbi(x) ≡ p(x|z = zbi );

• Compute the cumulative distribution functions Cbi (x) and Cai (x) from pbi(x)
and pai (x), respectively;

• Compute the position of the prior particle in the prior density: ci = Cbi (x
b
i);

• Preserve the rank of the particle in the posterior density by taking xai =

C
a (−1)
i (ci) as analysis value for x and particle i. This is illustrated on Fig.

2.2.

Although this method does not prevent a particle shifting from one mode to an-
other, two neighbouring particles in the prior ensemble are likely to remain neigh-
bours in the posterior ensemble.

Once the z and x analysis values are computed for each particle, the analysis
values for the third variable y can be computed. The process is strictly similar to
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the one described above, but for the variable y, and with an additional x = xai term
in the conditional statement. This reduces to selecting particles from the prior
distribution in the neighbourhood of (xai , z

a
i ) in the two-dimensional plane (x, z), to

form the density p(y|x, z, zo). In practice though, the conditioning to the previously
analysed non-observed variables is worth being omitted for computational issues.

Figure 2.2: Left: Illustration of the particle-by-particle MRHF analysis step for
the first unobserved variable: Green dots represent the prior ensemble; blue dots
vertically aligned at X = 0 represent the posterior z ensemble. The red dotted
line is the observation of z, the red square is the true state (not used for the
analysis). The red empty triangles show the particle being processed and its
corresponding z analysis value. Blue circles show the selected particles to form
the posterior density pai (x). Right: Illustration of the particle-by-particle MRHF
analysis step for the first unobserved variable (one particle): Red lines represent
the cumulative distribution functions (cdf) of the prior density pbi(x) (left panel)
and the posterior density pai (x) (right panel). The vertical black lines show the
selected particles used to build these densities. To compute the x analysis value
for the prior x particle near 11 on the left panel, the green line must be followed:
The cdf for the prior x is computed with the prior cdf (Result is near 0.68); from
this cdf value, the x analysis value is obtained on the right panel.

2.4.2 Workflow

Forecast steps are standard ensemble integrations. The MRHF is a serial analy-
sis scheme: Observations must be processed one by one. It proceeds as follows:

Loop on observations:

1. Isolate variables affected by the analysis (for localisation);

2. Correct observed variable z using the RHF approach:

• Sort the prior ensemble zbi ;

• Create prior density p(z) from the histogram;

• Create likelihood p(z|zo) on the same "grid" than the histogram;

• Compute posterior density by multiplying point-wise the prior density
and the likelihood;
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• Resample the posterior using an inversion of the Cumulative Distribu-
tion Function (CDF);
• Apply the inverse sorting process to find the posterior ensemble zai ;

3. Correct non-observed variables.
Loop on non-observed variables (x):
Loop on ensemble particles (i):

• Select particles of the prior ensemble which observed value z lies in
the neighbourhood of the prior observed value of the processed par-
ticle, zbi ;
• Form the prior density p(x|z = zbi ) from these particles and a rank

histogram approach;
• Compute the corresponding CDF, Cbi (x);
• Select particles of the prior ensemble which observed value z lies in

the neighbourhood of the posterior observed value of the processed
particle, zai ;
• Form the posterior density p(x|z = zai ) from these particles and a rank

histogram approach;
• Compute the corresponding CDF, Cai (x);
• Compute the position of the prior particle in the prior density: ci =
Cbi (x

b
i);

• Preserve the rank of the particle in the posterior density by computing
xai = C

a (−1)
i (ci);

4. From prior and posterior ensembles, compute corrections and apply taper-
ing function for localisation.

2.4.3 Computational cost

The computational cost has not been characterised in detail so far. The algo-
rithm detailed above is expensive because it involves sorting operations inside
intricated loops on the particles and the variables. A computationally more effi-
cient algorithm is presently under study, where, basically, the loop on ensemble
particles would be removed. Note, however, that the workflow follows the steps
of an EnKF (in Anderson’s form), with the correction of the observed variable
followed by the correction of non-observed variables, imbedded in the serial pro-
cessing of observations. The MRHF is quite flexible then: It is possible to process
only a few observations, or even a few variables, with the MRHF, the rest being
processed with an EnKF. Note also that the MRHF formulation naturally complies
with localisation.

2.5 Local anamorphosis transformation (CNRS/LGGE)

2.6 Description

The basic problem of the algorithm is to look for a nonlinear change of variable
transforming a random variable X with known cumulative distribution function
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(cdf) F (x) = p(X ≤ x) into a new random variable Z with the target cdf G(z) =
p(Z ≤ z). Elementary probability calculus provides a general solution for the
forward and backward transformations:

Z = G−1 [F (X)] and X = F−1 [G(Z)] (2.88)

providing that F and G are invertible. In particular, if Z ∼ U(0, 1) is uniformly
distributed on the interval [0, 1], with G(z) = z, then x = F−1(k/q) is the kth
q-quantile of X; and if Z ∼ N (0, 1) is normally distributed, with G(z) = 1

2 [1 +

erf(z/
√

2)], then Eq. (2.88) defines the forward and backward Gaussian anamor-
phosis transformation of the random variable X [Wackernagel, 2003, chapter 33].

2.6.1 Efficient approximate algorithm

In the Monte Carlo estimation methods (like the ensemble Kalman filter), the
prior probability distribution for the control variables is only approximately de-
scribed by a finite-size sample. The anamorphosis transformation in Eq. (2.88)
for each control variable can thus only be approximately computed from the avail-
able sample using a nonparametric estimate F̃ (x) of the exact marginal cdf F (x).
The most simple nonparametric estimate of a probability density function (pdf)
f̃(x) = dF̃ (x)/dx is the histogram: a piecewise constant pdf f̃(x), or a piece-
wise linear cdf F̃ (x). As a simple choice for the classes of the histogram, we
may use prescribed quantiles x̃k, k = 1, . . . , q of the input sample, i.e. such that
F̃ (x̃k) = rk, for a given set of rk (0 ≤ rk ≤ 1, rk < rk+1). In this way, we can
control explicitly the fraction of ensemble members (rk+1 − rk) in each class of
the histogram.

Then, with the same level of approximation, we can use the same histogram
representation of the Gaussian distribution, i.e. a piecewise linear G̃(z) interpolat-
ing the true Gaussian cdf between G(zk) = rk, k = 1, . . . , q, so that the anamor-
phosis transformation in Eq. (2.88) is also piecewise linear:

ϕforw(x) = G̃−1
[
F̃ (x)

]
= zk +

zk+1 − zk
x̃k+1 − x̃k

(x− x̃k)

for x ∈ [x̃k, x̃k+1] (2.89)

ϕback(z) = F̃−1
[
G̃(z)

]
= x̃k +

x̃k+1 − x̃k
zk+1 − zk

(z − zk)

for z ∈ [z̃k, z̃k+1] (2.90)

This approximate transformation remaps the quantiles x̃k, k = 1, . . . , q of the
input sample on the corresponding Gaussian quantiles zk, k = 1, . . . , q, and
interpolates linearly between them. It is bijective between the interval [x̃1, x̃q] and
[z1, zq], providing that the quantiles x̃k are distinct: x̃k 6= x̃k+1 ∀k.

A full description of this algorithm, with many examples, can be found in
Brankart et al. [2012].

2.6.2 Example

Figure 2.3 shows for instance the approximate Gaussian anamorphosis trans-
formation that is obtained with Eq. (2.89) using a 200-member random sample
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Figure 2.3: Approximate piecewise linear Gaussian anamorphosis transformation
(thick blue curve), remapping the deciles x̃k of a 200-member random sample of
the Gamma distribution Γ(k, θ) (top histogram) on the Gaussian deciles zk (left
histogram), as compared to the exact transformation (in red) transforming the
exact Γ(k, θ) (red curve superposed to the top histogram) into N (0, 1) (red curve
superposed to the left histogram).
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of the Gamma distribution X ∼ Γ(k, θ), with k = 4.236 and θ = 0.309 (chosen
so that the mode is equal to 1, and the 95% percentile is equal to 2.5). The
classes of the histogram for X are defined using the 10-quantiles (or deciles) of
the random sample: rk = k/q, with q = 10. They are remapped on the Gaussian
deciles zk (histogram on the left) using the piecewise linear transformation (blue
curve), which is here not far from the exact transformation (red curve), given by
Eq. (2.88). With this definition of rk, there is the same number of random draws
in each class of the histogram.

2.6.3 Workflow

The workflow of the algorithm is very simple since it only requires inserting 3
additional steps in any Gaussian observational update algorithm: three additional
steps before the classic Gaussian observational update, and one additional step
after the classic Gaussian observational update:

1. Compute quantiles of the input ensemble, in state space and in observation
space;

2. Perform forward anamorphosis transformation of the input ensemble, in
state space and in observation space;

3. Perform forward anamorphosis transformation of the observation vector;

4. Apply the classic Gaussian observational update to the transformed ensem-
ble and transformed observation; and

5. Perform backward anamorphosis transformation of the updated ensemble.

2.6.4 Computational cost

The first reason why such a simple approximation of the Gaussian anamorphosis
may be useful in practical ocean applications is that it can be performed at a
numerical cost that is usually much smaller than the numerical cost of a Gaussian
observational update (e.g. the analysis step of the ensemble Kalman filter). In
the identification of the approximate transformation in (2.89), the main cost is
associated to the computation of the quantiles x̃k of the input sample. If m is the
size of the sample, this cost is proportional to m logm, to sort the sample values.
Then, if n is the size of the control vector (i.e. the number of random variables to
transform), the total computational complexity to identify the functions ϕforw and
ϕback in Eqs. (2.89) and (2.90) is:

Cquantiles ∼ nm logm. (2.91)

In addition, in order to perform the observational update, one must apply the
transformation to the ensemble forecast and to the observations. Each transfor-
mation requires localising the input value among the quantiles x̃k (with complexity
proportional to log2 q with a bisection method), and then applying the correspond-
ing linear transformation in Eq. (2.89) (i.e. about 3 operations). To transform the
ensemble of m control vectors, together with the p observations values, and then
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the updated ensemble back in the original control space, this corresponds to a
computational complexity of:

Canamorphosis ∼ (2mn+ p)(3 + α log2 q), (2.92)

where α stands for the relative numerical cost between numerical comparisons
(needed to localize values in the list of quantiles) and algebraic operations (needed
to compute the linear transformations). Transforming the observations simply re-
quires applying the observation operator to the quantiles of the control vector, but
if some observations are nonlinearly linked to the control vector, it may be better
to augment the control vector with these observations (thus producing a problem
with larger n) and transform them using their own anamorphosis transformation.

On the other hand, this simple algorithm does not require a lot of memory or
disk space to store the approximate functions ϕforw and ϕback: only the quan-
tiles of the input ensemble x̃k, k = 1, . . . , q need to be stored, for a total storage
of qn real values (i.e. less than the storage of the forecast ensemble itself, which
requires storing mn real values). See the appendix for more details about the
practical implementation of the algorithm.
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Conclusions

In this deliverable the filters and smoothers that have been newly implemented
in the different toolboxes during the SANGOMA have been described. Specific
emphasis has been placed on the workflow of each new method and its com-
putational costs. All methods described explore nonlinearity in some form, from
extensions to existing linear filters to fully nonlinear particle filters. The meth-
ods chosen are Proper Orthogonal Decomposition (POD), two particle filters,
the Equivalent-Weights Particle Filter and the Implicit Equal-Weights Particle Fil-
ter, the second-order exact Nonlinear Ensemble Transform Filter and Multivariate
Rank Histogram Filter.

All of these methods are applicable to high-dimensional ocean models, and
as such should be a valuable extension to present-day practise in academia and
operational oceanography centres. Deliverable 3.4 describes the implementation
of the methods in the toolboxes in more detail, including examples of application
on small and sometimes medium-size benchmark cases.

Within Sangoma project we have implemented these new nonlinear methods
in the various data assimilation toolboxes and hence, they are easily usable with
any model that is connected to the data assimilation toolbox. Further, since all
partners have complied with data model specifications in work package 1 these
methods are easily transferable from their current toolboxes to any another tool-
box. The ease of using code implemented in Sangoma was seen in Deliverable
3.3 were EWPF was implemented within most of Sangoma toolboxes (of which
most use very different languages and data models).

38 Conclusions

http://www.ulg.ac.be/
http://www.data-assimilation.net/
http://sourceforge.net/p/sangoma/code/HEAD/tree/www/html/Documents/sangomaDL3.4.pdf
http://sourceforge.net/p/sangoma/code/HEAD/tree/www/html/Documents/sangomaDL3.3.pdf
http://sourceforge.net/p/sangoma/code/HEAD/tree/www/html/Documents/sangomaDL3.3.pdf


Deliverable 3.5

Bibliography

M. Ades and P. J. van Leeuwen. An exploration of the equivalent weights particle
filter. Q. J. R. Meteorol. Soc., 139:820–840, 2013.

M. Ades and P. J. van Leeuwen. The equivalent-weights particle filter in a high-
dimensional system. Q. J. R. Meteorol. Soc., 141:484–503, 2015.

M. U. Altaf, A. W. Heemink, and M. Verlaan. Inverse shallow-water flow modelling
using model reduction. International Journal for Multiscale Computational En-
gineering, 7:577–596, 2009.

M. U. Altaf, M. Verlaan, and A. W. Heemink. Efficient identification of uncertain
parameters in a large scale tidal model of european continental shelf by proper
orthogonal decomposition. Int. J. Numer. Meth. Fluids, 68:422–450, 2012.

J. Anderson. A local least squares framework for ensemble filtering. Monthly
Weather Review, 131:634–642, 2003.

J. Anderson. A non-gaussian ensemble filter update for data assimilation.
Monthly Weather Review, 138:4186–4198, 2010.

J. L. Anderson. An ensemble adjustment Kalman filter for data assimilation. Mon.
Wea. Rev., 129:2884–2903, 2001.

A. C. Antoulas. Approximation of large-scale Dynamical Systems. USA: SIAM,
2005.

Thomas Bengtsson, Peter Bickel, and Bo Li. Curse-of-dimensionality revisited:
Collapse of the particle filter in very large scale systems. IMS Collections Prob-
ability and Statistics: Essays in Honor of David A. Freedman, 2:316–334, 2008.

C. H. Bishop, B. J. Etherton, and S. J. Majumdar. Adaptive sampling with ensem-
ble transform Kalman filter. Part I: theoretical aspects. Mon. Wea. Rev., 129:
420–436, 2001.

J.-M. Brankart, C.-E. Testut, D. Bèal, M. Doron, C. Fontana, M. Meinvielle,
P. Brasseur, and J. Verron. Towards an improved description of ocean un-
certainties: effect of local anamorphic transformations on spatial correlations.
Ocean Science, 8:121–142, 2012.

G. Burgers, P. J. van Leeuwen, and G. Evensen. On the analysis scheme in the
ensemble Kalman filter. Mon. Wea. Rev., 126:1719–1724, 1998.

Final Document 39

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 3.5

J. Carrera and S. P. Neuman. Estimation of aquifer parameters under transient
and steady state conditions, part 1: Maximum likelihood method incorporating
prior information. Wat. Resourc. Res., 22:199–210, 1986.

A. J. Chorin and X. Tu. Implicit sampling for particle filters. PNAS, 106:17249–
17254, 2009.

A. J. Chorin, M. Morzfeld, and X. Tu. Interpolation and iteration for nonlinear
filters. Communications in Applied Mathematics and Computational Science,
5:221–240, 2010.

SE Cohn and R Todling. Approximate data assimilation schemes for stable and
unstable dynamics. J. Meteor. Soc. Japan, 74:63–75, 1996.

P. Courtier and O. Talagrand. Variational assimilation of meteorological obser-
vations with direct and adjoint shallow water equations. Tellus, 42A:531–549,
1990.

R. Delay. Atmospheric data analysis. Cambridge Unicersity Press, 1991.

A. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo sampling meth-
ods for bayesian filtering. Statistics and Computing, 10:197–208, 2000.

A. Doucet, N. de Freitas, and N. Gordon. Sequential monte-carlo methods in
practice. Springer-Verlag: Berlin, , 2001.

H. Elbern, H. Schmidt, and A. Ebel. Variational data assimilation for tropospheric
chemistry modeling. J. Goephys. Res., 102:15967–15985, 1997.

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. J. Geophys.
Res., 99:10143–10162, 1994a.

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostropic
model using monte carlo methods to forecast error statistics. J. Geophys. Res.,
99:10,143–10,162, 1994b.

G. Evensen. The ensemble Kalman filter: theoretical formulation and practical
implementation. Ocean Dyn., 53:343–367, 2003.

G. Evensen and P. J. van Leeuwen. Assimilation of geosat altimeter data for
the aghulas current using the ensemble Kalman filter with a quasi-geostrophic
model. Mon. Wea. Rev., 124:85–96, 1996.

B. A. Francis. A Course in H∞ Control Theory. Springer-Verlag, 1987.

Max D. Gunzburger. Reduced-order modeling, data compression and the design
of experiments. In Second DOE workshop on multiscale Mathematics, Broom-
field, Colorado, July 20–22 2004.

A. W. Heemink and H. Kloosterhuis. Data assimilation for non-linear tidal models.
International Journal for Numerical Methods in Fluids, 11:1097–1112, 1990.

40 BIBLIOGRAPHY

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 3.5

A. W. Heemink, E. E. A. Mouthaan, and M. R. T. Roest. Inverse 3D shallow
water flow modeling of the continental shelf. Continental Shelf Research, 22:
465–484, 2002.

I. Hoteit, D. T. Pham, and J. Blum. A semi-evolutive partially local filer for data
assimilation. Marine Pollution Bulletin, 43:164–174, 2001.

I. Hoteit, D. T. Pham, and J. Blum. A simplified reduced order Kalman filtering and
application to altimetric data assimilation in Tropical Pacific. Journal of Marine
Systems, 36:101–127, 2002.

P. L. Houtekamer and H. L. Mitchell. Data assimilation using an ensemble Kalman
filter technique. Mon. Wea. Rev., 126:796–811, 1998.

R. Kalman. A new approach to linear filtering and prediction problems. Trans.
ASME, Ser. D, J. Basic Eng., 82:35–45, 1960.

T. Kaminski, R. Giering, and M. Scholze. An example of an automatic
differentiation-based modeling system. Lecture Notes Comput. Sci., 2668:5–
104, 2003.

K. Karhunen. Zur spektral theorie stochasticher prozsee. Ann. Acad. Sci. Feni-
cae, 34 (A1):1–7, 1946.

R. W. Lardner, A. H. Al-Rabeh, and N. Gunay. Optimal estimation of parameters
for a two dimensional hydrodynamical model of the arabian gulf. J. Geophys.
Res. Oceans, 98:229–242, 1993.

W. G. Lawson and J. A. Hansen. Implications of stochastic and deterministic
filters as ensemble-based data assimilation methods in varying regimes of error
growth. Monthly Weather Review, 132:1966–1981, 2004.

M. Loeve. Functions aleatoire de second ordre. Revue Science, 84:195–206,
1946.

E. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130–141, 1963.

J. L. Lumley. The structure of inhomogeneous turbulence. In A. M. Yaglom and
V. I. Tatarski (eds), pages 166–178, Nauka, Moscow, 1967.

X. Luo and I. Hoteit. Robust ensemble filtering and its relation to covariance
inflation in the ensemble Kalman filter. Mon. Wea. Rev., 139:3938–3953, 2011.

S. Metref, E. Cosme, C. Snyder, and P. Brasseur. A non-gaussian analysis
scheme using rank histograms for ensemble data assimilation. Nonlin. Pro-
cesses Geophys., 21:869–885, 2014.

M. Morzfeld, X. Tu, E. Atkins, and A. J. Chorin. A random map implementation of
implicit filters. Journal of Computational Physics, 231:2049–2066, 2012.

L. Nerger, L. Hiller, and J. Schröter. A comparison of error subspace Kalman
filters. Tellus, 57A:715–735, 2005.

Final Document 41

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 3.5

D. S. Oliver, A. C. Reynolds, and N. Liu. Inverse theory for petroleum reservoir
characterization and history matching. UK: Cambridge, 2008.

K. Pearson. On lines and planes of closest fit to points in space. Phil. Mag., 2(6):
559–572, 1901.

D T Pham. Stochastic methods for sequential data assimilation in strongly non-
linear systems. Mon. Wea. Rev., 129:1194–1207, 2001.

D. T. Pham, J. Verron, and M. C. Roubaud. A singular evolutive extended Kalman
filter for data assimilation in oceanography. Journal of Marine Systems, 16:
323–340, 1998.

M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association, 94(446):590–599, 1999.

P. Sakov, F. Counillon, L. Bertino, K. A. Lisaeter, P. R. Oke, and A. Korablev.
TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and
Arctic. Ocean Sci., 8:633–656, 2012.

A. Segers, A. W. Heemink, M. Verlaan, and M. van Loon. A modified rrsqrt-
filter for assimilating data in atmospheric chemistry models. Environmental
Modeling and Software, 15:663–671, 2000.

D. Simon. Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Ap-
proaches. Wiley-Interscience, 2006.

L. Sirovich. choatic dynamics of coherent structures. Physica D, 37:126–145,
1987.

C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson. Obstacles to high-
dimensional particle filtering. Monthly Weather Review, 136:4629–4640, 2008.

C. Snyder, T. Bengtsson, and M. Morzfeld. Performance bounds for particle filters
using the optimal proposal. Monthly Weather Review, 143:4750–4761, 2015.

O. Talagrand. Assimilation of observations, an introduction. Journal of the Mete-
orological Society of Japan, 75:191–209, 1997.

P. G. J. Ten-Brummelhuis, A. W. Heemink, and H. F. P. van den Boogard. Identi-
fication of shallow sea models. Int. J. for Num. Met. Fluids, 17:637–665, 1993.

F. X. Le Dimet and O. Talagrand. Variational algorithms for analysis and assimi-
lation of meteorological observations: Theoratical aspects. Tellus, 38:97–110,
1986.

W. C. Thacker and R. B. Long. Fitting models to inadequate data by enforcing
spatial and temporal smoothness. J. Geophys. Res., 93:10655–10664, 1988.

Julian Tödter and Bodo Ahrens. A Second-Order Exact Ensemble Square Root
Filter for Nonlinear Data Assimilation. Mon. Wea. Rev., 143(4):1347–1367,
2015. ISSN 0027-0644.

42 BIBLIOGRAPHY

http://www.ulg.ac.be/
http://www.data-assimilation.net/


Deliverable 3.5

E. Tziperman, W. C. Thacker, and R. B. Long. Oceanic data analysis using a gen-
eral circulation model, part2: A north atlantic model. J. Phys. Oceanography,
22:1458–1485, 1992.

D. S. Ulman and R. E. Wilson. Model parameter estimation for data assimilation
modeling: Temporal and spatial variability of the bottom drag coefficient. J.
Geophys. Res. Oceans, 103:5531–5549, 1998.

P. J. Van Leeuwen. Particle filtering in geophysical systems. Mon. Wea. Rev.,
137:4089–4114, 2009.

P. J. Van Leeuwen. Nonlinear data assimilation in qeosciences: an extremely
efficient particle filter. Quarterly Journal of the Royal Meteorological Society,
136:1991–1999, 2010.

P. J. Van Leeuwen. Efficient nonlinear data-assimilation in geophysical fluid dy-
namics. Computers and Fluids, 46:52–58, 2011.

M. Verlaan and A. W. Heemink. Data assimilation schemes for non-linear shallow
water flow models. Adv. Fluid Mechanics, 96:277–286, 1996.

M. Verlaan and A. W. Heemink. Tidal flow forecasting using reduced rank square
root filters. Stochastic Hydrology and Hydraulics, 11:349 – 368, 1997.

P. T. M. Vermeulen and A. W. Heemink. Model-reduced variational data assimila-
tion. Mon. Wea. Rev., 134:2888–2899, 2006.

H. Wackernagel. Multivariate Geostatistics: An Introduction with Applications.
Springer, 2003.

J. S. Whitaker and T. M. Hamill. Ensemble data assimilation without perturbed
observations. Mon. Wea. Rev., 130:1913–1924, 2002.

M. Zhu, P. J. van Leeuwen, and J. Amezcua. Implicit equal-weights particle filter.
Q. J. R. Meteorol. Soc., page personal communication, 2015.

Final Document 43

http://www.ulg.ac.be/
http://www.data-assimilation.net/

	1 Introduction
	2 Shared Software Modules
	2.1 POD Calibration Method
	2.1.1 Background
	2.1.2 Linearisation and reduced model formulation
	2.1.3 Collection of the snapshots and POD basis
	2.1.4 Approximate objective function and its adjoint
	2.1.5 Workflow with POD algorithm
	2.1.6 Convergence criterion for inner and outer iterations
	2.1.7 Computational efficiency of the algorithm

	2.2 Efficient Particle Filters
	2.2.1 Description
	2.2.2 The basics
	2.2.3 Making Particle Filters efficient
	2.2.4 Workflow
	2.2.5 Computational Costs

	2.3 Nonlinear Ensemble Transform Filter
	2.3.1 Description
	2.3.2 Workflow
	2.3.3 Computational Cost

	2.4 Multivariate Rank Histogram Filter
	2.4.1 Description
	2.4.2 Workflow
	2.4.3 Computational cost

	2.5 Local anamorphosis transformation (CNRS/LGGE)
	2.6 Description
	2.6.1 Efficient approximate algorithm
	2.6.2 Example
	2.6.3 Workflow
	2.6.4 Computational cost


	3 Conclusions

