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Introduction

Important part of work package 3 of SANGOMA project is development of new
data assimilation methods and their implementation in Matlab/Octave and/or For-
tran languages compliant with specifications in work package 1. Each of the new
methods have been described in the living document, deliverable D3.2, which
is updated through the project and is presented in it’s final form as deliverable
D3.5. This report contains the documentation and description of Matlab/Octave
and/or Fortran codes for the methods which have been developed throughout
SANGOMA project.

The new methods which implementation will be discussed in this report are:

• Equal Weights Particle filter or EWPF from UREAD.

• Implicit Equal Weights Particle Filter or IEWPF from UREAD.

• Nonlinear Ensemble Transform Filter or NETF from AWI.

• Multivariate Rank Histogram Filter or MRHF from CNRS/LGGE.

4 Introduction
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Implementation of EWPF (UREAD)

2.1 Description of EWPF method

The Equivalent Weights Particle Filter [Van Leeuwen, 2010, Ades and van Leeuwen,
2012] or EWPF nudges particles towards future observations at the forecast step
and picks significant particles from the posterior density at the analysis step with
weights that are very close to each other.

The full description of the EWPF method can be found in Sangoma deliverable
D3.1 as well as the final Sangoma deliverable D3.5.

2.2 Description of the EWPF code

The EWPF is the one common new data assimilation method that has been
implemented across most toolboxes in Sangoma project including EMPIRE. in
UREAD there are two versions of EWPF that have been implemented:

• Original EWPF code in FORTRAN and PYTHON as developed and imple-
mented in EMPIRE by Browne and Wilson [2015].

• Sangoma EWPF code in FORTRAN and MATLAB which has been adapted
to be complaint with Sangoma data models and specifications in work pack-
age WP1.

The codes are very similar with the Sangoma version being a clean and easily
portable as well as C-bound version of the original EMPIRE code. The original
EWPF code in EMPIRE is open source and can be downloaded from:

www.met.reading.ac.uk/ darc/empire/doc/html/.
Sangoma EWPF code in FORTRAN and MATLAB are both also open source

and can be downloaded from
sourceforge.net/p/sangoma/code/HEAD/tree/workpackages/wp3/EWPF_code/.
The full Sangoma code structure and implementation in EMPIRE (as well as

other Sangoma toolboxes) can be found in Sangoma deliverable D3.3.

2.3 Implementation of the code in the EMPIRE

The EWPF has been implemented into EMPIRE (Employing MPI for Researching
Ensembles) and full details, including EMPIRE code in FORTRAN, are available
online www.met.reading.ac.uk/ darc/empire/doc/html/.

There are a number of particle and ensemble filters implemented in EM-
PIRE. A user can select the type of filter to be used by changing settings in
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’pf_parameters.dat’. In particular for the EWPF, one has to select ’filter = ’EW”.
The ’pf_parameters.dat’ data file is also used to select other options for the filter
such as observation generation, number of observations (if generated), run twin
experiments or not. In addition, some of the parameters in ’user_base.F90’ are
defined in this file such as ’efac’, ’ufac’, ’keep’, and ’nudgefac’.

When run, the first thing EMPIRE does is to call the ’configure_model’ routine
which returns the dimensions of the state and next set of observations as well
as the time at which next observations are available. However, a user can and
needs to use the ’configure_model’ routine to load in memory other data such
as data necessary for call-back routines ’cb_Qhalf’ and ’cb_solve_r’. Further,
if HQHT + R does not change over time then the user also can factorise it in
’configure_model’ to save computational time later. After the assimilation of the
first observations has been completed, EMPIRE calls ’reconfigure_model’ which
returns the time at which next observations are available and their dimension.
This continues until all observations are assimilated.

2.4 Benchmarks tests

Both EWPF versions have been run and tested with the small benchmark Lorenz96
model [Lorenz and Emmanuel, 1998] with 40 variables.

The original EWPF code in EMPIRE has recently been coupled with the
medium Sangoma benchmark NEMO GYRE, however, results are not yet avail-
able but we aim to have results in a very near future.

Sangoma EWPF code both in FORTRAN and MATLAB were tested using the
Lorenz 96 model with 40 variables of which first 20 were observed with linear H,
and last 20 were not observed. We used 25 particles with 1000 model timesteps
and 100 observation sets equally spaced in time. The initial condition for the ref-
erence solution is spun up from null state for 1000 timesteps. We used a very
simple diagonal observation and model error covariances with standard devia-
tions of σR = 1.0 and σQ = 0.5, respectively. The initial ensemble was created
around the initial reference solution with standard deviation σE = 0.2. Figure 2.1
is showing results for x1 variable in the model with the reference solution in blue,
observations as black dots and ensemble mean in dashed red in the upper plot
while the lower plot shows the ensemble standard deviation and RMSE between
ensemble mean and truth.

Figure 2.2 is showing results for x10 variable with the same legends. It is
clearly seen that the EWPF for x1 has a greater difficulty tracking solution than
for variable x10 since x1 has no information coming from the left since neither x40
nor x39 are observed while x10 has ten preceding observed variables.

6 Implementation of EWPF (UREAD)
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Figure 2.1: Lorenz 96 with EWPF for x1 variable.

Figure 2.2: Lorenz 96 with EWPF for x10 variable.
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Implementation of IEWPF (UREAD)

3.1 Description of IEWPF method

The Implicit Equivalent Weights Particle filter or IEWPF has been recently devel-
oped by Zhu et al. [2015] and is similar to EWPF; however, instead of drawing
sample directly from the proposal density as is done in the EWPF method, here
they are drawn implicitly. The full description of the method can be found in the
final Sangoma deliverable D3.5 as well as the original paper Zhu et al. [2015].

3.2 Description of the IEWPF code

The IEWPF is implemented in EMPIRE and the open source code can be down-
loaded from www.met.reading.ac.uk/ darc/empire.

3.3 Implementation of the code in the EMPIRE

Implementation of the IEWPF is very similar to the original EWPF in EMPIRE.
While the code is in FORTRAN 90/95 and uses basic data types such as arrays
and matrices, the code is not strictly compliant with work package WP1 specifi-
cations since it does not:

• use ’sangoma_base’ module to specify precision of the variables;

• use C-binding.

3.4 Benchmark tests

The IEWPF has been tested on small benchmark Lorenz 96 with 1000 dimen-
sions. Figures 3.1 and 3.2 show performance of the IEWPF method for observed
variable x856 and its rank histogram correspondingly (figures taken from Zhu et al.
[2015], personal communication). Similarly figures 3.3 and 3.4 show performance
of the IEWPF method for observed variable x856 and its rank histogram corre-
spondingly (figures after Zhu et al. [2015], personal communication).
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Figure 3.1: 1000 dimensional Lorenz 96 with IEWPF for observed variable x856.
The black line is the truth, the blue lines depict the evolution of the particles and
red crosses are observations. (Figure after Zhu et al. [2015], personal communi-
cation)

Figure 3.2: Rank histogram for variable x856 after a 10,000 time-steps model
running for IEWPF with 1000 dimensional Lorenz 96 model. (Figure after Zhu
et al. [2015], personal communication)
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Figure 3.3: 1000 dimensional Lorenz 96 with IEWPF for unobserved variable
x520. The black line is the truth, the blue lines depict the evolution of the parti-
cles and red crosses are observations. (Figure after Zhu et al. [2015], personal
communication)

Figure 3.4: Rank histogram for variable x520 after a 10,000 time-steps model
running for IEWPF with 1000 dimensional Lorenz 96 model. (Figure after Zhu
et al. [2015], personal communication)

10 Implementation of IEWPF (UREAD)
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Implementation of NETF (AWI)

4.1 Description of NETF method

The nonlinear ensemble transform filter (NETF), which was recently introduced
in [Tödter and Ahrens, 2015] was implemented in PDAF and further tested using
the medium case benchmark.

While the EnKFs are based on a Gaussian assumption for the prior ensemble,
the transformation in the NETF is designed to exactly match the first two moments
of Bayes theorem [see Tödter and Ahrens, 2015, for a derivation of the NETF].

The ensemble mean at time tk is computed as xk = 1
mXk1, using the vector

1 = (1, . . . , 1)T of length m. Defining the following matrix,

Xk =
[
xk, . . . ,xk

]
=

1

m
Xk11T , (4.1)

the ensemble perturbation matrix X′k is given by

X′k = Xk −Xk = XkS, where S = Im −
1

m
11T . (4.2)

Here, I denotes the identity matrix. Hence, the matrix S subtracts the ensemble
mean from Xk.

The NETF transforms the forecast ensemble into an analysis ensemble by
applying a weight vector and a transform matrix to the forecast mean and per-
turbations, respectively. As most particle filters, the NETF uses the likelihood
weights that arise from Bayes theorem. For normally distributed observation er-
rors, the weight of each member is given by

wi ∝ N
(
y;H

(
x
f(i)
k

)
,Rk

)
(4.3)

∝ exp

[
−1

2

(
y − y

f(i)
k

)T
R−1k

(
y − y

f(i)
k

)]
, (4.4)

where y
f(i)
k = Hk(x

f(i)
k ). The weights are normalized so that they sum up to one.

Before the weights are computed, the ensemble perturbations should be inflated
by an inflation factor γ > 1. The weight vector and transform matrix of the NETF
are computed from these weights as follows [Tödter and Ahrens, 2015]:

w = (w1, . . . , wm)T (4.5)

T =
√
m
[
Diag(w)−wwT

]1/2
. (4.6)
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Here, Diag(w) is a diagonal matrix that contains the weights wi on the diagonal.
To complete the algorithm, the analysis perturbations are computed as

Xa′
k = Xf ′

k TΛ, (4.7)

where Λ is an random orthogonal matrix [see Pham, 2001]. Finally, the mean is
updated via

X
a
k = X

f
k + Xf ′

k w1T, (4.8)

Thus, the new analysis ensemble is given by

Xa
k = X

a
k + Xa′

k . (4.9)

The NETF has to be applied in combination with localization as described in
[Tödter and Ahrens, 2015] for high-dimensional systems.

4.2 Description of the NETF code

INTERFACE:

SUBROUTINE sangoma_netf_analysis(dim, dim_obs, dim_ens, ens, &
Hens, obs, forget, cb_prodRinvA, flag) &
BIND(C, name="sangoma_netf_analysis_")

DESCRIPTION:

Analysis step of the NETF (Nonlinear Ensemble Transform Filter) following J.
Toedter and B. Ahrens, A Second-order Exact Ensemble Square Root Filter for
Nonlinear Data Assimlation, Mon. Wea. Rev. 143 (2015) 1347-1367.

This code is a simplified version of the NETF implemented in PDAF. E.g. the
parallelization, memory counting and timers have been removed. Also the inter-
face is shortened and automatic arrays are used instead of dynamic allocation.
The observation operator is applied outside of the analysis routine, which leads
to a restriction to linear observation operators. The routine uses a blocked en-
semble transformation as in PDAF to avoid the need for a second ensemble array.

REVISION HISTORY:

2014-03 - Paul Kirchgessner - Changed original PDAF-ETKF code to NETF
2015-10 - Lars Nerger - Adaption for Sangoma

USES:

USE, INTRINSIC :: ISO_C_BINDING
USE sangoma_base, ONLY: REALPREC, INTPREC
USE mod_sangoma_analysis, ONLY: generate_rndmat

IMPLICIT NONE

12 Implementation of NETF (AWI)
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ARGUMENTS:

INTEGER(INTPREC), INTENT(in) :: dim_obs ! Dimension of observation
vector

INTEGER(INTPREC), INTENT(in) :: dim_ens ! Size of ensemble
REAL(REALPREC), INTENT(inout) :: ens(dim, dim_ens) ! State ensemble
− overwritten

! In : forecast ; Out: analysis
ensemble

REAL(REALPREC), INTENT(inout) :: Hens(dim_obs, dim_ens) ! Observed
ensemble

REAL(REALPREC), INTENT(in) :: obs(dim_obs) ! Vector of observations
REAL(REALPREC), INTENT(in) :: forget ! Forgetting factor
INTEGER(INTPREC), INTENT(out) :: flag ! Status flag

! External call−back subroutine
INTERFACE

! Routine computing the product of inverse observation error covariance
matrix

! with some other matrix, which is a temporary result in the ETKF
SUBROUTINE cb_prodRinvA(dim_obs, dim_ens, HZ, RiHZ) BIND(C)

USE sangoma_base, ONLY: REALPREC, INTPREC
INTEGER(INTPREC), INTENT(in) :: dim_obs ! Observation

dimension
INTEGER(INTPREC), INTENT(in) :: dim_ens ! Ensemble

size
REAL(REALPREC), INTENT(in) :: HZ(dim_obs, dim_ens) ! Input matrix

in observation space
REAL(REALPREC), INTENT(out) :: RiHZ(dim_obs, dim_ens) ! The

result of the multiplication
END SUBROUTINE cb_prodRinvA

END INTERFACE

4.3 Implementation of the code in the PDAF

Since algorithmically the only difference between the ETKF and the NETF is the
computation of the transform matrix, the code of the NETF is directly based on
the existent ETKF code. The computation of the particle weights is changed, so
that the computation is based on the particle weights, as defined in the chapter
above. Although, the NETF allows for arbitrary distributed observations, in the
implementation of PDAF an Gaussian distribution was assumed, since most often
this is used.

4.4 Benchmark tests

The NETF was previously applied to several different small sized models [see
Tödter et al., 2015]. Recently, using the medium case benchmark, Tödter et al.
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Figure 4.1: RMSE of the NETF in the medium case benchmark, relative to the
error at the first analysis time. (Image taken from [Tödter et al., 2015])

[2015] demonstrated that the NETF is also applicable to high-dimensional assim-
ilation problems with an ensemble size that is computationally feasible.

Using 120 ensemble members the errors in the analysis in this setup could
be reduced below than 10% after one year of assimilation (see. Fig. 4.1 ). The
reduction is largest in the observed fields SSH and T. However, the errors in the
unobserved fields are also reduced to about 20%. Additional details to the results
can be found in [Tödter et al., 2015].
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Implementation of MRHF (CNRS/LGGE)

5.1 Description of MRHF method

The Multivariate Rank Histogram Filter (MRHF) has been developed by Metref
et al. [2014]. It is a fully non-Gaussian method, like standard particles filters.
It is a transform method, like all the methods based on the Kalman filter, and
contrary to standard particle filters that are sampling methods. For this reason,
it is expected to be more resilient to ensemble collapse than standard particle
filters. Localisation can be applied with the MRHF similarly to Ensemble Kalman
Filters. Finally, the MRHF is quite flexible and can be implemented in connexion
with an EnKF for example, to analyse only a few observations or a few variables of
a specific type. The description of the method can be found in the final Sangoma
deliverable D3.5 as well as the original paper Metref et al. [2014].

5.2 Description of MRHF code

The MRHF is still under development to reduce its computational complexity.
These developments are performed in PYTHON which provides a flexible en-
vironment with many built-in functions useful for the method (sorting, searching,
etc). Developments are still needed to confirm its compliance to high-dimensional
systems that would motivate its conversion in a more computationally efficient
language.

5.3 Benchmark tests

The MRHF has been implemented with the Lorenz 63 system [Lorenz, 1963] and
a 1D realistic ecosystem model (see deliverable D4.4). Tests have also been
conducted with the small benchmark Lorenz 96, though not utterly finalised. Fig-
ure 5.1 shows a comparison of Root Mean Square Errors from data assimilation
experiments performed with the Lorenz 63 system, using different assimilation
methods (differentiated by the different lines), different ensemble sizes (horizon-
tal axes), and three observation frequencies: every 10, 25, and 50 time steps
(the three panels). All three variables are observed with an error variance of 2.
These setups correspond to mildly, moderately and strongly nonlinear test cases,
respectively. The fully non-Gaussian methods (MRHF and particle filter) are more
efficient than the others for moderately and strongly non-Gaussian situations. In
the strongly nonlinear case, the MRHF performs much better than the particle
filter with moderate ensemble sizes. These is encouraging for the perspective of
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using the MRHF as a fully non-Gaussian method with high-dimensional systems.

Figure 5.1: Time-averaged analysis RMSE for the EnKF (dashed line), the RHF
(line with circles), the particle filter (with resampling, thick dashed line), the full
MRHF (thick solid line) and an approximated MRHF (line with triangles); for
experiments on the fully observed Lorenz 63 with observation time intervals
∆t = 0.10 (upper-panel), ∆t = 0.25 (center-panel) and ∆t = 0.50 (bottom-panel).
The dotted-line represents the time-averaged analysis RMSE for the particle filter
with 2048 particles, which can be considered as a target score.

16 Implementation of MRHF (CNRS/LGGE)
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Local anamorphosis transformation
(CNRS/LGGE)

6.1 Description of the local anamorphosis method

The basic problem of the algorithm is to look for a nonlinear change of variable
transforming a random variable X with known cumulative distribution function
(cdf) F (x) = p(X ≤ x) into a new random variable Z with the target cdf G(z) =
p(Z ≤ z). Elementary probability calculus provides a general solution for the
forward and backward transformations:

Z = G−1 [F (X)] and X = F−1 [G(Z)] (6.1)

providing that F and G are invertible. In particular, if Z ∼ U(0, 1) is uniformly
distributed on the interval [0, 1], with G(z) = z, then x = F−1(k/q) is the kth
q-quantile of X; and if Z ∼ N (0, 1) is normally distributed, with G(z) = 1

2 [1 +

erf(z/
√

2)], then Eq. (6.1) defines the forward and backward Gaussian anamor-
phosis transformation of the random variableX (Wackernagel, 2003, chapter 33).

Efficient approximate algorithm. In the Monte Carlo estimation methods (like
the ensemble Kalman filter), the prior probability distribution for the control vari-
ables is only approximately described by a finite-size sample. The anamorphosis
transformation in Eq. (6.1) for each control variable can thus only be approxi-
mately computed from the available sample using a nonparametric estimate F̃ (x)
of the exact marginal cdf F (x). The most simple nonparametric estimate of a
probability density function (pdf) f̃(x) = dF̃ (x)/dx is the histogram: a piecewise
constant pdf f̃(x), or a piecewise linear cdf F̃ (x). As a simple choice for the
classes of the histogram, we may use prescribed quantiles x̃k, k = 1, . . . , q of
the input sample, i.e. such that F̃ (x̃k) = rk, for a given set of rk (0 ≤ rk ≤ 1,
rk < rk+1). In this way, we can control explicitly the fraction of ensemble mem-
bers (rk+1 − rk) in each class of the histogram.

Then, with the same level of approximation, we can use the same histogram
representation of the Gaussian distribution, i.e. a piecewise linear G̃(z) inter-
polating the true Gaussian cdf between G(zk) = rk, k = 1, . . . , q, so that the
anamorphosis transformation in Eq. (6.1) is also piecewise linear:
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ϕforw(x) = G̃−1
[
F̃ (x)

]
= zk +

zk+1 − zk
x̃k+1 − x̃k

(x− x̃k)

for x ∈ [x̃k, x̃k+1] (6.2)

ϕback(z) = F̃−1
[
G̃(z)

]
= x̃k +

x̃k+1 − x̃k
zk+1 − zk

(z − zk)

for z ∈ [z̃k, z̃k+1]. (6.3)

This approximate transformation remaps the quantiles x̃k, k = 1, . . . , q of the
input sample on the corresponding Gaussian quantiles zk, k = 1, . . . , q, and
interpolates linearly between them. It is bijective between the interval [x̃1, x̃q] and
[z1, zq], providing that the quantiles x̃k are distinct: x̃k 6= x̃k+1 ∀k.

A full description of this algorithm, with many examples, can be found in
Brankart et al. [2012].

6.2 Description of the local anamorphosis code

The anamorphosis code is available in the SANGOMA toolbox, using the stan-
dard SANGOMA coding rules:

INTERFACE:

SUBROUTINE sangoma_anamorphosis(dim, dim_qua, dir, &
qua_ref, qua, vct, status) &
BIND(C, name="sangoma_anamorphosis_")

DESCRIPTION:

This routine performs local anamorphosis transformation of a state or ob-
servation vector using a set of quantiles of the input ensemble (as provided by
sangoma_ComputeQuantiles). This is an implementation of the specific algorithm
described in Brankart et al. [2012].

Inputs are the vector to transform, the quantiles of the ensemble, and the
corresponding quantiles of the target distribution (assumed all distinct).

REVISION HISTORY:

2015-02 - J.-M. Brankart - Initial SANGOMA code

USES:

USE, INTRINSIC :: ISO_C_BINDING
USE sangoma_base, ONLY: REALPREC, INTPREC

IMPLICIT NONE

ARGUMENTS:

18 Local anamorphosis transformation
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INTEGER(INTPREC), INTENT(in) :: dim ! Vector (state or obs) dimension
INTEGER(INTPREC), INTENT(in) :: dim_qua ! Number of quantiles
INTEGER(INTPREC), INTENT(in) :: dir ! Forward (+) or backward (-) transform.
REAL(REALPREC), INTENT(in) :: qua_ref(dim_qua) ! Quantiles of the target distribution
REAL(REALPREC), INTENT(in) :: qua(dim, dim_qua) ! Ensemble quantiles
REAL(REALPREC), INTENT(inout) :: vct(dim) ! Vector to transform
INTEGER(INTPREC), INTENT(out) :: status ! Status flag (0=success)

COMMENT:
For an example on using sangoma_Anamorphosis see example_Anamorphosis.

6.3 Implementation of the code in SESAM

The SANGOMA code is a rewriting of a code previously developed in the SESAM
software, as documented in Brankart et al. [2012]. With SESAM, the algorithm
can be implemented as follows:

1. Computation of the quantiles of the input ensemble, with the SESAM com-
mand line:

sesam -mode anam -inxbas [ens_dir]
-outxbasref [quant_dir]

where [ens_dir] is a directory containing the input ensemble forecast (as a
set of NetCDF files, using the SESAM naming conventions), and [quant_dir],
a directory containing as an input, the definition of the quantiles (an ASCII
file with the rk, k = 1, . . . , q). From this, SESAM computes the (local) quan-
tiles of the ensemble x̃k, k = 1, . . . , q (as a set of NetCDF files, in the
directory [quant_dir]), linearly interpolating between successive ensemble
members, if necessary.

2. Local anamorphic transformation of the input ensemble, with the SESAM
command line:

sesam -mode anam -inxbas [ens_dir]
-inxbasref [quant_dir]
-outxbas [aens_dir]
-typeoper +

where [ens_dir] is a directory containing the input ensemble forecast, and
[quant_dir], a directory containing the quantiles x̃k, k = 1, . . . , q of the
ensemble (as obtained from the previous tool), and, as an additional in-
put, the quantiles of the target distribution (an ASCII file with the zk, k =
1, . . . , q). From this, SESAM computes the transformed ensemble (as a set
of NetCDF files, in the directory [aens_dir]), by linearly interpolating be-
tween the zk using Eq. (6.2). In this way, the transformation can easily
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be performed towards any target distribution (by just changing the ASCII
file with the zk), in particular towards the Gaussian distribution. (The back-
ward transformation of Eq. (6.3) can be performed similarly by replacing the
+ sign by a – sign in the command line.)

Hence, only two SESAM command lines are sufficient to apply the algorithm to
a variety of oceanographic applications. The first one (1) provides the histogram
description of the marginal uncertainties. This is used by the second one (2) to
perform the piecewise linear local anamorphic transformation, as a preprocessing
to any operation taking profit from Gaussianity.

6.4 Benchmark tests

The above described anamorphosis algorithm has been tested and evaluated
using a wide set of oceanographic applications as described in Brankart et al.
[2012]. Here is one of these examples using the ecosystem component of the
large scale SANGOMA benchmark.

In this example, we study the stochastic response of a coupled physical-bio-
geochemical model (CPBM) of the North Atlantic to uncertainties in the wind
forcing. For that purpose, we use a 200-member designed as follows:

1. the CPBM couples a 1/4◦ resolution circulation model of the North Atlantic
with the LOBSTER biogeochemical model, with 6 prognostic variables in
the euphotic layer: phytoplankton (PHY), zooplankton (ZOO), nitrate (NO3),
ammonium, detritus, and semi-labile dissolved organic nitrogen;

2. the ensemble forecast is initialised at the beginning of the spring bloom on
April 15, 1998; and

3. the random wind perturbations are sampled from a Gaussian probability
distribution, with zero mean and a covariance derived from the ERA40 vari-
ability.

In the ensemble forecast, the main impact of the random wind perturbations
on the ecosystem results from the deepening and shallowing of the mixed layer,
which modifies the nutrient supply and thus the primary production in the eu-
photic layer. This mechanism produces a quite heterogenous response in terms
of phytoplankton concentration, as illustrated in Fig. 6.1 by three deciles of the
ensemble (corresponding to rk = 0.2, 0.5 and 0.8, top panels) and one of the
ensemble members (bottom panels). The wind can indeed only trigger a large
ensemble dispersion (i.e. large differences between the deciles, in the top pan-
els) in areas where the spring bloom has already started, like primarily the Gulf
Stream pathway, the Irminger Sea and the Western half of the Labrador Sea, and
secondarily, the Northern half of the North Sea, the Gulf of Lions and the Bay of
Biscay. Conversely, in the areas where the primary production is weak (as in the
subtropical gyre and in the Norwegian Sea), it remains weak, whatever the wind
perturbations.

Furthermore, one particular ensemble member (Fig. 6.1, bottom left panel)
may be well below the median in some regions (e.g. in the Labrador Sea) and
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Figure 6.1: Deciles of the ensemble for phytoplankton (top panels) corresponding
(from left ot right) to rk = 0.2, 0.5 (median) and 0.8, and illustration of one of
the ensemble members (bottom panels): the phytoplankton map (left panel), the
rank in the ensemble (middle panel), and the transformed map (right panel) after
Gaussian anamorphosis.

well above the median in other regions (e.g. in the Irminger Sea). This phe-
nomenon is more obvious if we look at the rank of this ensemble member in
the ensemble forecast (Fig. 6.1, bottom middle panel). More precisely, what is
shown is the rank divided by the ensemble size (to be between 0 and 1), which
corresponds to the local anamorphic transformation of the ensemble member us-
ing the uniform distribution U(0, 1) as a target distribution. For instance, a value
below 0.2 means below the second decile (r2 = 0.2), a value below 0.5 means
below the median (r5 = 0.5), etc. In this figure, we can see immediately where
this ensemble member is high or low with respect to the others (compare the rank
in the Labrador Sea and in the Irminger Sea), even in regions where the disper-
sion of the ensemble is very small, as along the coast of Africa or in the Southern
half of the North Sea. See also how the high rank region in the Irminger Sea (i.e.
with a production well above the ensemble median) embeds indifferently areas of
high primary production and areas of low production, as a result of a strongly pos-
itive wind anomaly covering the whole region. The rank may thus better translate
the effect of a homogeneous perturbation, which is masked in the original vari-
able by the heterogeneity of the ecosystem dynamics. And from the local rank
(Fig. 6.1, bottom middle panel) to the local Gaussian anamorphic transformation
of the same ensemble member (Fig. 6.1, bottom right panel), there is nothing but
a global anamorphosis transforming U(0, 1) into N (0, 1). The figure thus looks
very similar, with the same nonlinear change of variable at every grid point (we
could have kept the same figure, with a nonlinear labelling of the coluorbar).

This benchmark, and many other [Brankart et al., 2012, see] have also been
used to evaluate the effect of local anamorphic transformations on the spatial
correlation structure. As a general rule, the results indicate that

1. the transformation is accurate enough to faithfully preserve the correlation
structure if the distribution is already close to Gaussian, and
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2. the transformation has the general tendency of increasing the correlation
radius as soon as the dependence between random variables becomes
nonlinear.

These effects may be understood by observing that the linear correlation coef-
ficient (Pearson) between the transformed variables corresponds to a nonlinear
measure of correlation between the original variables, which is very similar to
the rank correlation (Spearman). On the other hand, even if the method finds
its full justification with a stochastic ensemble description of the uncertainties,
several examples show that it may also be useful with the non-stochastic ensem-
bles (resulting for instance from the system past variability) that are often used in
present-day operational systems to reduce the numerical cost of data assimila-
tion (until truly stochastic solutions become affordable). In both cases, the most
important consequence for data assimilation of this increase in the correlation
magnitude is a significant reduction in the number of degrees of freedom in the
uncertainties (in a Gaussian sense), so that a better estimation accuracy can be
obtained from a given observation network. And from a more general point of
view, this also means that it may sometimes be rewarding to put some time and
numerical effort to improve the statistical description of the uncertainties, rather
than giving too much confidence to over simplistic assumptions.
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Conclusions

The implementation in Matlab/Octave and/or Fortran languages, most compliant
with specifications in work package 1, for each new nonlinear filter developed
in SANGOMA has been described. The methods themselves are described in
detail in Deliverable 3.5. We concentrated on the Equal Weights Particle filter
or EWPF from UREAD, the Implicit Equal Weights Particle Filter or IEWPF from
UREAD, the Nonlinear Ensemble Transform Filter or NETF from AWI and Multi-
variate Rank Histogram Filter from CNRS/LGGE.

The main message is that it is very easy to implement these new methods as
several parts of these new schemes are similar to what is already available in the
different toolboxes, and code can be reused. This provides another example of
the efficiency of the toolboxes that have been developed further in SANGOMA.
Another major advantage is that it is extremely easy to compare different methods
and decide on the most efficient and accurate method for each specific applica-
tion.
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