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0.1 Introduction

This deliverable ’Live document’ now is closed and the final version of it can be
accessed in deliverable DL3.5, the final document.

MyOcean is the E.U. project dedicated to the implementation of the GMES
Marine Core Service for ocean monitoring and forecasting. MyOcean aims at
accurately delivering regular and systematic information on the state of global
oceans and European regional seas at the required resolution. This information
includes hindcasts, nowcasts and forecasts describing the physical state of the
ocean and its primary ecosystem. The project also contributes to climate re-
search by providing timeseries of analysed parameters. A new FP7 project (R&D
to enhance future GMES applications in the Marine and Atmosphere areas) by
the MyOcean consortium aims at expansion to the MyOcean project is recently
initiated. As part of this FP7 project a proposal “Stochastic assimilation for the
next generation ocean model application (SANGOMA)” to prepare an assimila-
tion component of the next generation operational system of the GMES marine
core service is funded.

Data assimilation (DA) is a group of methods in which the observations of the
state of a system are combined with the results from numerical model to produce
accurate estimates of all the current (and future) state variables of the system. A
data assimilation system consists of three components: a set of observations, a
dynamical model, and a data assimilation scheme.

The central concept of the data assimilation is the concept of errors, error es-
timation and error modelling. The observations have errors arising from various
sources: e.g. instrumental noise and the representativeness errors. All dynam-
ical models are imperfect with errors arising from: the approximate physics (or
biology or chemistry), which parametrises the interaction of the state variables
and the discretisation of continuum dynamics into a numerical model. An aspect
common for all the data assimilation schemes is that the quantitative basis of the
assimilation is formed by the relative uncertainties of the dynamics and observa-
tions. Thus, the new estimate does not degrade the reliable information of the
observational data but rather enhances that information content.

The most well-known application of DA is in weather forecasting problems in
which it was applied in real life for the first time in 1950′s and 1960′s to improve the
weather forecasts. A good description of the development of DA in meteorology
can be found in Delay (1991). The DA has already proved to be useful in other
fields of application like tidal models Heemink and Kloosterhuis (1990), oceanog-
raphy Evensen (1994b), nonlinear shallow-water storm surge models Verlaan and
Heemink (1996) and atmospheric chemistry and transport modelling (e.g. Elbern
et al. (1997), Segers et al. (2000)). Among all the DA methods, four dimensional
variational data assimilation (4DVAR) called as adjoint method is the one of the
most effective and powerful approaches. The method has an advantage of di-
rectly assimilating all the available observations distributed in time and space into
the numerical model while maintaining dynamical and physical consistency with
the model Talagrand (1997). On the other hand since the adjoint of the numerical
model needs to be determined, which is usually complicated and time consuming
effort for a nonlinear model, the use of 4DVAR is still limited in various fields.

The Kalman filter (KF) Kalman (1960) is a sequential data assimilation al-
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gorithm. For linear stochastic systems, it can be shown that the KF is an op-
timal linear estimator that minimises the variance of the estimation error Simon
(2006). Because of its relative simplicity in implementation, the KF is suitable for
many data assimilation problems. However, for high dimensional systems such
as weather forecasting models, direct application of the KF is prohibitively expen-
sive as it involves manipulating covariance matrices of the system states. For
this reason, different modifications of the KF were proposed to reduce the com-
putational cost. These include various ensemble Kalman filters (EnKF) Anderson
(2001); Bishop et al. (2001); Burgers et al. (1998); Evensen (1994a); Evensen
and van Leeuwen (1996); Houtekamer and Mitchell (1998); Whitaker and Hamill
(2002), the error subspace-based filters Cohn and Todling (1996); Hoteit et al.
(2001, 2002); Pham et al. (1998); Verlaan and Heemink (1997), to name but
a few. For a detailed description of the above filters, readers are referred to
Evensen (2003); Nerger et al. (2005) for reviews of some of the aforementioned
filters. Roughly speaking, these modifications exploit the information of a subset
in the state space of a dynamical system, while the information of the complement
set is considered less influential, and thus ignored. Consequently, the computa-
tions of these modified filters are normally conducted on the chosen subsets,
instead of the whole state space, so that their computational costs are reduced.
For simplicity, we may sometimes abuse the terminology by referring to all the
aforementioned filters as the EnKF-based methods ( EnKF methods for short).

0.2 Purpose of this Document

As describe in the proposal one of the main aim of the SANGOMA project is
to accelerate the implementation of flexible DA toolboxes to strengthen the con-
nection between academics and oceanographic community. This will also allow
fast implementation and evaluation of the new DA techniques. Present day high
resolution ocean models are very nonlinear and require a strong need for data
assimilation methods that can handle these non-linearities. Apart from ensemble
based methods, completely nonlinear DA techniques have also been available
such as Particle Filters (PF) that directly utilises Bayes Theorem but suffering
from high dimensionality problems (Bengtsson et al. (2008)). Recently methods
are developed with the combinations of EnKF and PF (e.g., Van Leeuwen (2009)).
Similarly, efforts are made to develop robust filters that emphasise on the robust-
ness of their error estimates, so that they may have better tolerances to possible
uncertainties in assimilation. As an example, the H∞ filter (HF) Francis (1987);
Simon (2006). An Ensemble time-local H∞ filter (EnTLHF) is proposed recently
in Luo and Hoteit (2011) as an analogy to the EnKF for high dimensional data
assimilation problems.

This document gives a detailed description of the DA methods that include
uncertainty estimation and that can be implemented for large dimensional ocean
models. The methods presently available in the present toolboxes (PDAF, OpenDA,
Beluga/Sequoia, SESAM, NERSC EnKF, OAK etc) are the most likely candidates
to be adapted during this project. Apart from these methods the above men-
tioned new developments which include new extension to EnKF, ensemble based
parameter identification methods and promising PF developments are also most
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likely candidate and examples of the methods that can be implemented. The next
section gives a detail description of each individual method. This document will
be updated throughout the project duration whenever a method is selected for a
common DA toolbox.

0.3 Shared Software Modules

This section gives a detailed description of the shared modules. We start by
giving common symbol notations. These main symbol notations will be used for
all the modules throughout this document.

M non-linear model operator

M Tangent linear model

X model state vector

Xt true value of the model state vector

Xb background model state

Xa analyzed model state

Y observation vector

H observation operator

H linearized observation operator

B background error covariances

A analysis error covariances

R observation error covariances

K analysis gain Matrix

I identity Matrix

J cost function

Jb background term of the cost function

Jo observation term of the cost function

Jp penalty term of the cost function

γ parameter vector

n size of state vector

nq size of observation vector

0.3.1 POD Calibration Method

The adjoint method is a well-known approach to inverse modelling. The method
aims at adjusting a number of unknown control parameters on the basis of given
data. The control parameters might be model initial conditions or model pa-
rameters Le Dimet and Talagrand (1986), Thacker and Long (1988). An ob-
jective function is defined which measures the misfit between the solution and
the available data for any model solution over the assimilation interval. To obtain
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a computationally efficient procedure this objective function is minimized with a
gradient-based algorithm where the gradient is determined by solving the adjoint
problem. The adjoint approach is computationally very efficient because one
gradient calculation requires just a single simulation of the forward model and a
single simulation of the adjoint model backward in time, irrespective of the num-
ber of parameters. The adjoint method has been used and applied successfully
to many types of inverse problems in ground water flow studies (e.g. Carrera
and Neuman (1986)), in meteorology (e.g. Courtier and Talagrand (1990)), in
oceanography (e.g. Tziperman et al. (1992)) and in shallow water flow models
(e.g. Ten-Brummelhuis et al. (1993), Lardner et al. (1993), Ulman and Wilson
(1998), Heemink et al. (2002)). One of the drawbacks of the adjoint method is
the programming effort required for the implementation of the adjoint model. Re-
search has recently been carried out on automatic generation of computer codes
for the adjoint, and adjoint compilers have now become available (see Kaminski
et al. (2003)). Even with the use of these adjoint compilers developing an adjoint
model is often a significant programming effort that hampers new applications of
the method.

Proper orthogonal decomposition (POD) is a model reduction method con-
sidered as an application of the singular value decomposition (SVD) to the ap-
proximation of general dynamical systems Antoulas (2005). It is a data driven
projection based method originally developed by Karl Pearson Pearson (1901).
Karhunen Karhunen (1946) and Loeve Loeve (1946) had used it as statistical
tool to analyze random process data. Lumley Lumley (1967) gave the name
POD, and used the method to study turbulent flow. The POD method has ap-
plication in many fields like image processing, signal processing, data compres-
sion, oceanography, chemical engineering and fluid mechanics (see Gunzburger
(2004)). In the POD method the projection subspace is determined by processing
data obtained from numerical simulations of high dimensional model which is ex-
pected to provide information about the dynamical behaviour of the system. The
high dimensional equations are projected onto the low dimensional subspace
resulting in a low dimensional model and thus reduces the CPU time of model
simulation.

Vermeulen and Heemink Vermeulen and Heemink (2006) proposed a method
based on POD which shifts the minimisation into lower dimensional space and
avoids the implementation of the adjoint of the tangent linear approximation of
the original nonlinear model. In their approach, an ensemble of snapshot vectors
of forward model simulations is used to determine an approximation of the covari-
ance matrix of the model variability and a small number of leading eigenvectors of
this matrix is used to define a model subspace. By projecting the original model
onto this subspace an approximate linear reduced model is obtained. Due to the
linear character of the reduced model its adjoint can be implemented easily and
the minimisation problem is solved completely in reduced space with very low
computational cost. The method has recently been applied successfully to the
Dutch continental shelf model to estimate water depth Altaf et al. (2012).
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Background

The discrete model for the evaluation of shallow water system from time ti to time
ti+1 can be described by an equation of the form

X(ti+1) = Mi[X(ti), γ], (1)

where state vector X(ti+1) ∈ <n denotes the state vector at time ti+1 and γ is the
vector of the uncertain parameters which needs to be determined. Mi is nonlinear
and deterministic dynamics operator that includes inputs. Suppose now that we
have imperfect observations Y (ti) ∈ <n

q
of the dynamical system (1) that are

related to the model state at time ti through

Y (ti) = HX(ti) + η(ti), (2)

where H : <n → <nq
is a linear observation operator that maps the model fields

on observation space and η(ti) is an unbiased, random Gaussian error vector
with covariance matrix Ri. The aim of data assimilation is to find the best esti-
mate of the system initial parameters γ based on given observations. We assume
that the difference between data and simulation results is only due to measure-
ment errors and incorrectly prescribed model parameters. The problem of the
estimation is then solved by directly minimising the objective function J

J(γ) =
∑
i

[Y (ti)−H(X(ti))]
TR−1i [Y (ti)−H(X(ti))] (3)

with respect to the parameters γ satisfying the discrete nonlinear forecast model
(1). The efficient minimisation of the objective function requires the computation
of the gradient of the objective function (3). The adjoint method computes the
exact gradient efficiently. Regardless of the number of parameters, the time re-
quired to compute the gradient using adjoint technique is more or less identical
and is comparable with the computational time needed for a single simulation run
of the nonlinear model (1). It requires one forward simulation with the original
nonlinear model (1) and a second additional simulation backward in time with the
adjoint model

ν(ti) = MT
i+1ν(ti+1)− 2HR−1i [Y (ti)−H(X(ti))], (4)

where ν(ti) represents the solution of the adjoint model. The gradient ∇J of the
objective function J with respect to each component γk of the uncertain parame-
ters vector γ is given by

∇Jk =
∑
i

− [ν(ti+1)]
T [
∂Mi[X(ti), γ]

∂γk
], k = {1, · · · , np}. (5)

The main hurdle in the use of adjoint method is its implementation, especially
when the forward model contains non-linearities.

Linearisation and reduced model formulation

The classical adjoint problem can be simplified with the hypothesis that the objec-
tive function J can be made quadratic by assuming that the nonlinear dynamics
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operator Mi can be linearised. The linearisation of nonlinear high-order model (1)
using the first order Taylor’s formula around the background parameter γbk gives

4X(ti+1) =
∂Mi[Xb(ti), γ

b]

∂Xb(ti)
4X(ti) +

∑
k

∂Mi[Xb(ti), γ
b]

∂γk
∆γk (6)

where X is linearised state vector, Xb is the background state vector with the
prior estimated parameters vector γb and 4X is a deviation of the model from
background trajectory.

A model can be reduced if the incremental state 4X(ti+1) can be written as
linear combination

4X(ti) = Pξ(ti+1), (7)

where P = [p1, p2, · · · , pr] is a projection matrix such that P TP = Ir and ξ is a
reduced state vector given by

ξ(ti+1) = M̃iξ(ti) +
∑
k

∂M̃i

∂γk
∆γk (8)

or in matrix form (
ξ(ti+1)

∆γ

)
=

(
M̃i M̃γ

i

0 I

) (
ξ(ti)
∆γ

)
(9)

Here ∆γ is the control parameter vector, M̃i and M̃γ
i are simplified dynamics

operators which approximate the full Jacobians Mi and ∂Mi
∂γk

respectively:

M̃i = P TMiP, (10)

M̃γ
i = P T (

∂Mi

∂γ1
, · · · , ∂Mi

∂γnp
), (11)

The Jacobian Mi, is obtained by approximating the nonlinear dynamics operator
Mi by linearising it with respect to background state Xb. Instead of computing
this huge Jacobian by approximating the partial differential with finite difference
by perturbing the nonlinear operator Mi in the direction of each node, we perturb
along the direction of ph only:

Miph =
Mi[Xb(ti) + εph, γ

b]−Mi[Xb(ti), γ
b]

ε
, h = {1, · · · , r}, (12)

with ε being the size of the perturbation. The reduced dynamics operator M̃i can
now be computed by premultiplying the above formulae by P T :

M̃i = P T (
∂Mi

∂Xb(ti)
p1, · · · ,

∂Mi

∂Xb(ti)
pr). (13)

Notice also that only the original model simulations are needed here.The reduced
model requires less computational time as it simulates a reduced state within the
dimension r instead of the original dimension n where r < n. The dimension on
which the reduced model operates is (r+np)× (r+np) with np being the number
of estimated parameters.
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Collection of the snapshots and POD basis

The POD method is used here to obtain an approximate low-order formulation of
the original tangent linear model. POD is an optimal technique of finding a basis
which spans an ensemble of data (snapshots) collected from an experiment or
a numerical simulation of a dynamical system. The POD modes are optimal at
approximating a given dataset. Since the reduced model is used here to esti-
mate uncertain parameters (depth D and manning coefficient cm), the snapshots
should be able to represent the behaviour of the system for these parameters.
Therefore the snapshot vectors ei ∈ <s are obtained from the perturbations ∂Mi

∂γk
along each estimated parameter γk to get a matrix

E = {e1, · · · , es}; i = {1, 2, · · · , s}. (14)

The dimension of this ensemble matrix E is s = np × ns, where ns is the number
of snapshot collected for each individual parameter γk. The covariance matrix Q
can be constructed from the ensemble E of the snapshots by taking the outer
product

Q = EET (15)

The projection matrix P used in the previous section is based on the dominant
eigenvectors (POD modes) of this covariance matrix. This covariance matrix is
usually huge as in the current application with state vector of dimension ∼ 3×106,
so direct solution of eigenvalue problem is not feasible. To shorten the calcula-
tion time necessary for solving the eigenvalue problem for this high dimensional
covariance matrix, we define a covariance matrix G as an inner product

G = EtE (16)

In the method of snapshots (Sirovich (1987)), one then solves the s×s eigenvalue
problem

Gzi = EtEzi = λizi, i ∈ {1, 2, · · · , s} (17)

where λi are the eigenvalues of the above eigenvalue problem. The eigenvectors
zi may be chosen to be orthonormal and the POD modes P are then given by:

pi = Ezi/
√
λi (18)

A physical explanation of POD modes is that they maximise the average energy
in the projection of data onto subspace spanned by the modes. We define a
measure ψi for the relative information to choose a low dimensional basis by
neglecting modes corresponding to the small eigenvalues:

ψi =
λi∑s
l=1 λl

100%, i = {1, 2, · · · , s} (19)

We collect pr (r < s) modes such that ψ1 > ψ2 > . . . > ψr and they totally explain
at least the required variance ψe,

ψe =

r∑
l=1

ψl (20)

The total number of eigenmodes r in the POD basis P depends on the required
accuracy of the reduced model.
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Approximate objective function and its adjoint

In reduced model approach, we look for an optimal solution of the (1) to minimise
the approximate objective function Ĵ in an incremental way:

Ĵ(∆γ) =
∑
i

[{Y (ti)−H(Xb(ti))}−Ĥξ(ti,∆γ)]TR−1i [{Y (ti)−H(Xb(ti))}−Ĥξ(ti,∆γ)].

(21)
The value of the approximate objective function Ĵ is obtained by correcting the
observations Y (ti) for background state Xb(ti) which is mapped on the obser-
vational space through a mapping H and for the reduced model state ξ(ti,∆γ)
which is mapped to the observational space through mapping Ĥ with Ĥ = HP .

Since the reduced model has linear characteristics, it is easy to build an ap-
proximate adjoint model for the computation of gradient of the approximate ob-
jective function (21). The gradient of Ĵ with respect to ∆γ is given by

∂Ĵ

∂(∆γ)
=
∑
i

−[ν̂(ti+1)]
T ∂ξ(ti+1)

∂(∆γ)
, (22)

where ν̂(ti+1) is the reduced adjoint state variable (see Appendix A). Once the
gradient has been computed, the process of minimizing the approximate objective
function Ĵ is done along the direction of the gradient vector in the reduced space.

After the minimization process the initial parameters γ are updated and new
set of updated parameters γup is obtained:

γup = γ + ∆γ. (23)

This process of minimization is repeated several times by constructing new POD
model with new set of updated parameters γup to get optimal parameters.

Workflow with POD algorithm

In order to perform the whole parameter estimation process, the following steps
are executed.

1. Outer Iteration:

(a) Generate an ensemble of forward model simulations using initial pa-
rameters γb.

(b) Solve eigenvalue problem to get dominant eigenmodes pi
(c) Establish a POD reduced model and its adjoint model using eigen-

modes pi.

2. Inner Iteration:

(a) Perform optimisation iterations in the reduced space to obtain the op-
timal solution of the approximate objective function Ĵ .

(b) Update the initial parameters γb after the minimisation process obtain
new set of updated parameters γup.

3. Return to step 1 with new set of updated parameters γup until optimality
condition is achieved.
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Convergence criterion for inner and outer iterations

The minimisation is performed using a quasi-Newton optimisation algorithm where
the Hessian of the objective function is updated using the limited Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) method. The minimisation algorithm requires con-
vergence criteria to terminate. We have defined two criterions, one is for inner
iterations and one is for outer iterations of the optimisation process. We stop
the present inner iteration α and switch to a new outer iteration β with updated
parameters γup by criterion µ, which is defined as

µ =
| Ĵαi+1 − Ĵαi |

max{| Ĵαi+1 |, 1}
< ε, (24)

where αi represents the ith inner iteration. The value of the ε is chosen such that
the approximate objective function Ĵ stops to change, i.e. ε = 10−4 (see Oliver
et al. (2008)). The outer iteration cycle is aborted when the terminal value of ρ is
obtained

ρ =
| Jβi − Jβi−1

|
| Jβi |

≤ κ, (25)

where βi stands for the ith outer iteration, κ is the terminal value.

Computational efficiency of the algorithm

The computational efficiency of the model-reduced approach is influenced by
three factors.

1. Ensemble generation: The computational costs of the reduced model ap-
proach are dominated by the generation of the ensemble of forward model
simulations. If the dynamics of the system does not change significantly
during the course of simulation then a smaller simulation period can be
chosen for the generation of ensemble Altaf et al. (2009). Using this en-
semble the optimisation problem can then be solved over the whole period
of model simulation.

To achieve convergence, the POD method needs to be updated in each
outer iteration β, so the ensemble E of snapshot vectors is required in each
β. Instead of defining a new model subspace of the leading eigenvectors
in each β by generating a new ensemble of the forward model simulations,
it is possible to obtain the reduced model by projecting the original model
with updated parameters onto the same subspace.

2. Ensemble size: The efficiency of optimisation process is also influenced
by the ensemble size. A large ensemble size leads to a huge eigenvalue
problem. On the other hand, since the ensemble gives the representation of
the model behaviour with respect to each γk, it is important that the number
of snapshot vectors included in the ensemble must give this representation.
So the quality of ensemble is crucial for a reduced-order procedure to be
effective. It is possible to include only those snapshots in the ensemble for
the period where data is available.
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3. Outer iteration: The convergence criterion ρ should be carefully chosen.
It should not be chosen too small as this causes jumping of the updated
parameters γup around the optimal global solution Vermeulen and Heemink
(2006).
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0.3.2 Example Module

Introduction of the method including usage, background and references.

Description

Detailed description of the method.

Workflow

procedural flow of the method and if possible give the pseudo code here

Computational Costs
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